Answer:
5/8 of a cup
Step-by-step explanation:
Answer:
is outside the circle of radius of
centered at
.
Step-by-step explanation:
Let
and
denote the center and the radius of this circle, respectively. Let
be a point in the plane.
Let
denote the Euclidean distance between point
and point
.
In other words, if
is at
while
is at
, then
.
Point
would be inside this circle if
. (In other words, the distance between
and the center of this circle is smaller than the radius of this circle.)
Point
would be on this circle if
. (In other words, the distance between
and the center of this circle is exactly equal to the radius of this circle.)
Point
would be outside this circle if
. (In other words, the distance between
and the center of this circle exceeds the radius of this circle.)
Calculate the actual distance between
and
:
.
On the other hand, notice that the radius of this circle,
, is smaller than
. Therefore, point
would be outside this circle.
Answer:
x=44444444444444444444444444444444
Step-by-step explanation:
Answer:
2/3 of n +5>12
Step-by-step explanation:
Answer:
1.15%
Step-by-step explanation:
To get the probability of m independent events you multiply the individual probability of each event. In this case we have m independent events, each one with the same probability, therefore:


This is a particlar scenario of binomial distribution problem. So the binomial distribution questions are about the number of success of m independent events, where every individual event has the same p probability. In the question we have 20 events and each event has a probability of 80%. The binomial distribution formula is:

n is the number of events
k is the number of success
p is the probability of each individual event
is the binomial coefficient
the binomial coefficient allows to find the subsets of k elements in a set of n elements. In this case there is only one subset possible since the only way to get 20 of 20 correct questions is to getting right all questions (for getting 19 of 20 questions there are many ways, for example getting the first question wrong and all the other questions right, or getting second questions wrong and all the other questions right, etc).

therefore, for this questions we have:
