Pasa 96 veces. Porque cuando en una hora ahí 4 múltiples de 3. Tu coges las 4 vez es I lo multiplica a 24 horas. Así es como yo resulte con el número 96.
Answer:
141 square inches
Step-by-step explanation:
Area of a triangle: Base*Height*1/2
Area of a trapezoid: Height * (Base1 +Base2) / 2
Triangle Base = 6
Triangle Height = 8
6*8*1/2 = 24 square inches
Trapezoid Height = 9
Trapezoid Base1 = 16
Trapezoid Base2 = 10
9*(16+10) / 2 = 117 square inches
Total = Area of triangle + Area of trapezoid
Total = 24 + 117 = 141 square inches
Every time the x goes up 1 the y goes up by 3
Ok so the first step is to -1 from both sides. On the right side it cancels out and on the left side it = -16. So now your left with -16= 8x. Your still not done yet though. So now what you want to do is divide both sides by 8. On the right side it cancels out and you bring down x and on the left side it equals -2. So x=-2. So to verify it you have to plu -2 back into the equation. So -15= 8 Times -2 +1 so 8 Times -2 = -16 plus one is -15. Hoped that helped!!
Answer:

Step-by-step explanation:
We can write
as follows:
![\frac{11s}{s^2-12s+52}\\=11\left [ \frac{s}{s^2-12s+52} \right ]\\=11\left [ \frac{s}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6+6}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16}](https://tex.z-dn.net/?f=%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%7D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7Bs%5E2-12s%2B52%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%2B6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D)
To find:
![L^{-1}\left [ \frac{11s}{s^2-12s+52 \right ]}\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%20%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%20%5Cright%20%5D%7D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D)
We will use formulae:

we get solution as :
![L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+4^2} \right ]+\frac{66}{4}\left [ \frac{4}{(s-6)^2+4^2} \right ] \right ]\\=11e^{6t}\cos 4t+\frac{33}{2}e^{6t}\sin 4t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B4%7D%5Cleft%20%5B%20%5Cfrac%7B4%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%20%5Cright%20%5D%5C%5C%3D11e%5E%7B6t%7D%5Ccos%204t%2B%5Cfrac%7B33%7D%7B2%7De%5E%7B6t%7D%5Csin%204t)