Answer:
It has <u>greater accuracy than other nondestructive methods in determining the depth of internal flaws and the thickness of parts with parallel surfaces.</u>
Explanation:
Hope this helps you!
This problem is looking for the minimum value of μs that is
necessary to achieve the record time. To solve this problem:
Assuming the front wheels are off the ground for the entire
¼ mile = 402.3 m, the acceleration a = µs·9.8 m/s².
For a constant acceleration, distance = 402.3
m = 1/2at^2 = 804.6 m / (4.43 s)^2 = a = µs·9.8 m/s^2
µs = 804.6 m / (4.43s)^2 / 9.8 m/s^2 = 4.18
As per Newton's III law we can say that
Force applied by object 1 on object 2 is always equal in magnitude and opposite in direction of the force that object 2 apply on object 1.
So we can say it as

now here above question is based upon the same
if a bag of vegetables applied a force F = 22.5 N of the surface stand the the same surface will apply same magnitude of force in opposite direction on the vegetables bag
So our answer will be F = 22.5 N (upwards).
Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.