Answer:
Parallelogram
Step-by-step explanation:
if you have a graphing paper and locate the points and after locating the points, connect it, you then have a parallelogram
Answer:
Step-by-step explanation:
It maybe will be ![\neq x^{2} \leq \\ \\ \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \sqrt{x} \\ \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. x^{2} x^{2} \sqrt{x} \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \frac{x}{y} \alpha \beta x_{123} \\ x^{2} \int\limits^a_b {x} \, dx x^{2}](https://tex.z-dn.net/?f=%5Cneq%20x%5E%7B2%7D%20%5Cleq%20%5C%5C%20%5C%5C%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Csqrt%7Bx%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Calpha%20%5Cbeta%20x_%7B123%7D%20%5C%5C%20x%5E%7B2%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20x%5E%7B2%7D)
Answer:
The slope of the line is -7/8
When the point (7, –4) is used, the point-slope form of the line is
y+4=(-7/8)(x-7)
The slope-intercept form of the line is y=(-7/8)x+(17/8)
Step-by-step explanation:
Step-by-step explanation:
Answer:
8.3 cm
Step-by-step explanation:
The product of lengths to the near and far point of intersection with the circle is the same in all cases:
(7 cm)(7 cm) = (y)(11 cm +y) = (4 cm)(4 cm +x)
Since we're only interested in x, we can divide by 4 and subtract 4:
49 cm² = (4 cm)(4 cm +x)
(49/4) cm = 4 cm +x . . . . . . divide by 4 cm
8.25 cm = x . . . . . . . . . . . . . subtract 4 cm
To the nearest tenth, x = 8.3 cm.
_____
For a tangent segment, the two points of intersection with the circle are the same point, so the product of lengths is the square of the length.
___
The angles depend on the size of the circle, which is not given.
Hello!
We can solve this by using substitution
we can plug y = x - 1 into the other equation
So 2x - 3( x - 1) = -1
We can distribute the -3 to (x - 1)
2x - 3x + 3 = -1
Combine like terms
-x + 3 = -1
Subtract 3 from both sides
-x = -4
Since x is negative we can multiply both sides by -1
x = 4
We can plug x into the first equation
y = (4) - 1
y = 3
The answers are x = 4 and y = 3
Hope this helps!