The answer is true. Pretty darn sure
Answer:
w=5
Step-by-step explanation:
using the distributive property to simplify the equation
-4(w)+1(-4)=-24 so
-4w-4=-24 (adding 4 to both sides)
-4w==20 (divide by -4)
w=5
we'll start off by grouping some

so we have a missing guy at the end in order to get the a perfect square trinomial from that group, hmmm, what is it anyway?
well, let's recall that a perfect square trinomial is

so we know that the middle term in the trinomial, is really 2 times the other two without the exponent, well, in our case, the middle term is just "x", well is really -x, but we'll add the minus later, we only use the positive coefficient and variable, so we'll use "x" to find the last term.

so, there's our fellow, however, let's recall that all we're doing is borrowing from our very good friend Mr Zero, 0, so if we add (1/2)², we also have to subtract (1/2)²
![\bf \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2-\left[ \cfrac{1}{2} \right]^2 \right)=6\implies \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2 \right)-\left[ \cfrac{1}{2} \right]^2=6 \\\\\\ \left(x-\cfrac{1}{2} \right)^2=6+\cfrac{1}{4}\implies \left(x-\cfrac{1}{2} \right)^2=\cfrac{25}{4}\implies x-\cfrac{1}{2}=\sqrt{\cfrac{25}{4}} \\\\\\ x-\cfrac{1}{2}=\cfrac{\sqrt{25}}{\sqrt{4}}\implies x-\cfrac{1}{2}=\cfrac{5}{2}\implies x=\cfrac{5}{2}+\cfrac{1}{2}\implies x=\cfrac{6}{2}\implies \boxed{x=3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29%3D6%5Cimplies%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D6%2B%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D%5Ccfrac%7B25%7D%7B4%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Csqrt%7B%5Ccfrac%7B25%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B%5Csqrt%7B25%7D%7D%7B%5Csqrt%7B4%7D%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B5%7D%7B2%7D%2B%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B6%7D%7B2%7D%5Cimplies%20%5Cboxed%7Bx%3D3%7D)
Answer:
<em>Any width less than 3 feet</em>
Step-by-step explanation:
<u>Inequalities</u>
The garden plot will have an area of less than 18 square feet. If L is the length of the garden plot and W is the width, the area is calculated by:
A = L.W
The first condition can be written as follows:
LW < 18
The length should be 3 feet longer than the width, thus:
L = W + 3
Substituting in the inequality:
(W + 3)W < 18
Operating and rearranging:

Factoring:
(W-3)(W+6)<0
Since W must be positive, the only restriction comes from:
W - 3 < 0
Or, equivalently:
W < 3
Since:
L = W + 3
W = L - 3
This means:
L - 3 < 3
L < 6
The width should be less than 3 feet and therefore the length will be less than 6 feet.
If the measures are whole numbers, the possible dimensions of the garden plot are:
W = 1 ft, L = 4 ft
W = 2 ft, L = 5 ft
Another solution would be (for non-integer numbers):
W = 2.5 ft, L = 5.5 ft
There are infinitely many possible combinations for W and L as real numbers.
Answer: Hello mate!
the equation is written is:
f(t) = 2 / 3 (3)t
And is hard to work with this, but let's try:
I will interpret this function in two ways:
f(t) = (2/3^(3t)) in this case, the exponential part is in the denominator, so when t increases, the denominator also increases, if the denominator increases, the value of the function decreases, then, in this case, we have an exponential decay.
second case:
f(t) = (2/3)^(3t) the case is similar.
we know that 2/3 < 1
now, (2/3)^3t = (2^3t/3^3t)
3 is a number bigger than 2, then 3^3t > 2^3t, meaning that when t increases, bot denominator, and numerator increases, but the denominator increases faster, this means that we still have an exponential decay.