Answer:
A, C and E are true.
Step-by-step explanation:
The domain is a set of natural numbers.
The recursive formula is correct:
When x = 1, f(x) = 4 and f(x + 1) = f(2) = 3/2 f(x) = 3/2 * 4 = 6.
It is also true for the other points on the graph.
D is incorrect.
E is correct exponential growth with the formula 4(3/2)^(x-1).
We know that
If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment. (Intersecting Secant-Tangent Theorem)
so
ST²=RT*QT
RT=7 in
QT=23+7-----> 30 in
ST²=7*30-----> 210
ST=√210-----> 14.49 in
the answer is
RT=14.49 in
Answer:
4
Step-by-step explanation:
Although you didn't give me any answers to go with your problem, I am assuming that since 15-7 is 8, and 3 + 1 = 4, the answer should be 4. Now regarding if it is times, it would be x2. Because for times 2 would be 8. Overall the answer should be 4.
Answer:
Sabemos que:
L es el largo de la avenida.
En la primer etapa se asfalto la mitad, L/2, entonces lo que queda por asfaltar es:
L - L/2 = L/2.
En la segunda etapa se asfalto la quinta parte, L/5, entonces lo que queda por asfaltar es:
L/2 - L/5 = 5*L/10 - 2*L/10 = (3/10)*L
En la tercer etapa se asfalto la cuarta parte del total, L/4, entonces lo que queda por asfaltar es:
(3/10)*L - L/4 = 12*L/40 - 10L/40 = (2/40)*L
Y sabemos que este ultimo pedazo que queda por asfaltar es de 200m:
(2/40)*L = 200m
L = 200m*(40/2) = 4,000m
Answer:
I'm pretty sure it's none of the above
Step-by-step explanation:
Sorry if you get it wrong :/