Firstly , we can draw diagram
we can see that
adjacent = 850
opposite =250
so, we can use tan formula


16.38

so,
angle of depression is 16.38 degree........Answer
You're looking for the largest number <em>x</em> such that
<em>x</em> ≡ 1 (mod 451)
<em>x</em> ≡ 4 (mod 328)
<em>x</em> ≡ 1 (mod 673)
Recall that
<em>x</em> ≡ <em>a</em> (mod <em>m</em>)
<em>x</em> ≡ <em>b</em> (mod <em>n</em>)
is solvable only when <em>a</em> ≡ <em>b</em> (mod gcd(<em>m</em>, <em>n</em>)). But this is not the case here; with <em>m</em> = 451 and <em>n</em> = 328, we have gcd(<em>m</em>, <em>n</em>) = 41, and clearly
1 ≡ 4 (mod 41)
is not true.
So there is no such number.
Answer:
80 points
Step-by-step explanation:
400 x 0.20% = 80
Answer:
4 years
Step-by-step explanation:
560 = 7000 × 2/100 × t
t = 4
<em>x</em>/<em>r</em> + <em>x</em>/<em>w</em> + <em>x</em>/<em>t</em> = 1
<em>x</em> (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>) = 1
<em>x</em> = 1 / (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>)
To make the solution a bit cleaner, multiply through the numerator and denominator by the LCM of each fraction's denominator, <em>rwt</em> :
<em>x</em> = 1 / (1/<em>r</em> + 1/<em>w</em> + 1/<em>t</em>) • <em>rwt</em> / <em>rwt</em>
<em>x</em> = <em>rwt</em> / (<em>rwt</em>/<em>r</em> + <em>rwt</em>/<em>w</em> + <em>rwt</em>/<em>t</em>)
<em>x</em> = <em>rwt</em> / (<em>wt</em> + <em>rt</em> + <em>rw</em>)