Answer:
Let coordinates of vertex D be (x,y)
In parallelogram diagonals are bisect each other.
∴ Mid-point of AC= Mid-point of BD
⇒ (
2
3+(−6)
,
2
−4+2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,
2
−2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,−1)=(
2
−1+x
,
2
−3+y
)
Now,
⇒
2
−3
=
2
−1+x
⇒ −6=−2+2x
⇒ −4=2x
∴ x=−2
⇒ −1=
2
−3+y
⇒ −2=−3+y
⇒ 1=y
∴ y=1
∴ Coordinates of vertex D is (−2,1)
9514 1404 393
Answer:
6
Step-by-step explanation:
The value of b that makes the two lines identical is the opposite of the y-intercept of the line.
y = 6x -6 . . . . has y-intercept = -6
The value of b is the number in the term -6, so is 6.
Answer:
x=-3, y=-6. (-3, -6).
Step-by-step explanation:
-4x+y=6
-5x-y=21
--------------
-9x=27
x=27/-9
x=-3
-5(-3)-y=21
15-y=21
y=15-21
y=-6
Answer:
sorry you out of luck man