Explanation:
Boiling point is defined as the point at which liquid state and vapor state of a substance are existing in equilibrium.
Equilibrium is defined as the state in which rate of forward and rate of backward reaction are equal to each other.
For example, 
So, when we boil bromine which is present in liquid state then at the boiling point its vapors will exist in equilibrium. And unless all the liquid state of bromine will not convert into vapors its temperature will not change.
Therefore, we can conclude that at boiling point the liquid and the vapur of Bromine are in equilibrium.
First step is to get the mass of water molecule in grams:
From the periodic table:
molar mass of hydrogen is 1
molar mass of oxygen is 16
molar mass of a water molecule = 2(1) + 16 = 18 gm
Now, to convert the gm into amu, all you have to do is multiply the gm you got by Avogadro's number as follows:
mass of water molecule = 18 x 6.22 x 10^23 = 1.1196 x 10^25 amu which is approximately 1 x 10^25 amu
a)
→ 
b)
→ 
<h3>
What are half-reactions?</h3>
The half-reaction method is a way to balance redox reactions. It involves breaking the overall equation down into an oxidation part and a reduction part.
a)
→ 

= 
= -0.83 - (-2.71) =1.88V
b)
→ 
= 
=-0. - (0.8) =-0.8V
Learn more about the half-reactions here:
https://brainly.in/question/18053421
#SPJ1
Answer:
<em>What quantity dictates the speed of a reaction?</em> The activation energy
Explanation:
According to the collision theory, when molecules collide, they must overcome an energy barrier for the reaction to take place. This energy, known as activation energy, is represented by the difference in energy between the initial state and the transition state. The higher the activation energy, the slower the reaction. That's why catalysts reduce the activation energy to accelerate the reaction.
The compound that could serve as a reactant in the neutralization reaction is H2SO4
Explanation
Neutralization reaction occur between an acids and a base. H2SO4 ( sulfuric acid) is a strong acid. It can be neutralized by strong base such as NaOH ( sodium hydroxide)
Example of neutralization reaction is
2NaOH + H2SO4 → Na2SO4 + 2H2O