<h3>
Answer:</h3>
150 g Si
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 3.2 × 10²⁴ atoms Si
[Solve] grams Si
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Si - 28.09 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. Instructed to round to 2 sig figs.</em>
149.266 g Si ≈ 150 g Si
Answer:
Ionic compounds are neutral compounds made up of positively charged ions called cations and negatively charged ions called anions.
Explanation:
For binary ionic compounds (ionic compounds that contain only two types of elements), the compounds are named by writing the name of the cation first followed by the name of the anion.
The simplified formula for the determination of the number of ATP molecules produced from fat oxidation is:
5(n-1) + 12n - 2
This formula is derived using the amount of energy produced using each turn of the Kerb's cycle, which has two-carbon units fed to it via beta oxidation (also referred to as the fatty acid spiral).
In order to use this formula, we require the value of n. n is the number of two-carbon units that the fatty acid molecule will produce. This means:
n = 6 / 2 = 3
Using n = 3
5(3 - 1) + 12(3) - 2
44 ATP molecules
Answer:
Yes
Explanation:
1 mol of any substance is equal to the avagadro constant
We can calculate the new volume of the gas using the Combined Gas Law:
(P1 x V1) / T1 = (P2 x V2) / T2
The initial volume, pressure, and temperature were 280 mL, 1.3 atm, and 291.15 K (changing the temperature into Kelvin is necessary), and the final volume, pressure, and temperature is V2, 3.0 atm, and 308.15 K. Plugging these values in and solving, we find that:
(P1 x V1) / T1 = (P2 x V2) / T2
(1.3 atm x 280 mL) / 291.15 K = (3.0 atm x V2) / 308.15 K
V2 = 128.42 mL
This makes sense considering the conditions, a small increase in temperature would make the gas expand but a significant increase in the pressure would cause the volume to decrease.
Hope this helps!