The hydroxide ions keep decreasing and the hydrogen ions increase, pH decreases.
<h3>What is hydroxide?</h3>
Hydroxide is a diatomic anion with synthetic recipe OH⁻. It comprises of an oxygen and hydrogen particle kept intact by a solitary covalent bond, and conveys a negative electric charge. It is a significant yet generally minor constituent of water. It capabilities as a base, a ligand, a nucleophile, and an impetus. Hydroxide is a diatomic anion with chemical formula OH −. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. Hydroxide ions can act as a catalyst in different types of reactions. Hydroxide ions can function as base, ligand, nucleophile or a catalyst.
Learn more about hydroxide, visit
brainly.com/question/17525831
#SPJ4
Answer:
Ka3 for the triprotic acid is 7.69*10^-11
Explanation:
Step 1: Data given
Ka1 = 0.0053
Ka2 = 1.5 * 10^-7
pH at the second equivalence point = 8.469
Step 2: Calculate Ka3
pKa = -log (Ka2) = 6.824
The pH at the second equivalence point (8.469) will be the average of pKa2 and pKa3. So,
8.469 = (6.824 + pKa3) / 2
pKa3 = 10.114
Ka3 = 10^-10.114 = 7.69*10^-11
Ka3 for the triprotic acid is 7.69*10^-11
Answer:
The value of he change in Gibbs free energy ΔG = - 18.083 KJ
Explanation:
Given data
The concentration of glucose inside a cell is (P) = 0.12 m M
The concentration of glucose outside a cell is (R) = 12.9 m M
No. of moles = 1.5 moles
The change in Gibbs free energy
ΔG = RT ㏑
ΔG = 8.314 × 310 ㏑
ΔG = - 12.055 
Since No. of moles = 1.5 moles
Therefore
ΔG = - 12.055 × 1.5
ΔG = - 18.083 KJ
This the value of he change in Gibbs free energy.
Answer:
C
this answer needs to be 20 characters long
Data Given:
Pressure = P = 0.5 atm
Volume = V = 2.0 L
Temperature = T = 50 °C + 273 = 323 K
Moles = n = ?
Solution:
Let suppose the gas is acting Ideally, Then According to Ideal Gas Equation.
P V = n R T
Solving for n,
n = P V / R T
Putting Values,
n = (0.5 atm × 2.0 L) ÷ (0.0821 atm.L.mol⁻¹.K⁻¹ × 323 K)
n = 0.0377 mol