Answer:
They're different - heat and thermal energy. ... The heat, in turn, speeds up the molecules within the pot and the water. If you place a thermometer in the water, as the water heats up, you can watch the temperature rise. Again, an increase in internal energy will result in an increase in temperature.
Often, the rock layers bookending the mass extinction are noticeably different in their compositions. These changes in the rocks show the effects of environmental disturbances that triggered the mass extinction and sometimes hint at the catastrophic cause of the extinction
Answer:
Explanation:
We can use the Ideal Gas Law and solve for T.
pV = nRT
Data
p = 1.25 atm
V = 25.0 L
n = 2.10 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
Calculations
1. Temperature in kelvins
2. Temperature in degrees Celsius
First, find how many grams are in 1 mole of water.
For a hydrogen atom, there is about 1 gram per mole. For an oxygen atom, there are about 16 grams per mole.
In H2O, there are two hydrogen atoms and one oxygen atom. This means there are 18 grams in one mole of water. Multiply the mass in one mole by your number of moles.
18 x 11.8 = 212.4 grams
You have 212.4 grams of water.
Mg gained mass because it went from being a single element (on the reactant side) to being a molecule (on the product side).