1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
10

I WILL Give BRAINLIST Unlike protists, organisms in the group Animalia

Chemistry
1 answer:
anastassius [24]3 years ago
5 0

Answer:

B

Explanation:

B

have cells with a cell wall and are heterotrophic

You might be interested in
Please help answer this. And please no links!<br>​
zhenek [66]

Answer:

i am not sure but its 2 ican"t qry

Explanation:

6 0
3 years ago
Heyy guys, so basically i need help with stoichiometric calculation I will give you 100 points just to answer all of these answe
jeka94

Answer:

3. The mass of ethanol required is approximately 0.522869 g

The mass of ethanoic acid required is approximately 0.68156 g

4. The mass of iron (III) oxide required is approximately 285.952.189.095 tonnes

5. The mass of silver nitrate required is approximately 14.53 grams

6. The mass of copper oxide that would be needed is approximately 31.86 grams

7. a. The mass of the precipitate, Zn(OH)₂ formed is approximately 49.712 grams

b. The mass of the precipitate, Al(OH)₃ formed is approximately 13 grams

c. The mass of the precipitate, Mg(OH)₂, formed is approximately 14.579925 grams

Explanation:

3. The 1 mole of ethanol and 1 mole of ethanoic acid combines to form 1 mole of ethyl ethanoate

The number of moles of ethyl ethanoate in 1 gram of ethyl ethanoate, n = 1 g/(88.11 g/mol) = 1/88.11 moles

∴ The number of moles of ethanol = 1/88.11 moles

The number of moles of ethanoic acid = 1/88.11 moles

The mass of ethanol = (46.07 g/mol) × 1/88.11 moles = 0.522869 g

The mass of ethanoic acid in the reaction = 60.052 g/mol × 1/88.11 moles ≈ 0.68156 g

4. 1 mole of iron(III) oxide reacts with 1 mole of CO₂ to produce 1 mole of iron

The number of moles in 100 tonnes of iron= 100000000/55.845 = 1790670.60614 moles

The mass of iron (III) oxide required = 159.69 × 1790670.60614 = 285952189.095 g ≈ 285.952.189.095 tonnes

5. The number of moles of NaCl in 5 grams of NaCl = 5 g/58.44 g/mol = 0.0855578371 moles

The mass of silver nitrate required, m = 169.87 g/mol × 0.0855578371 moles ≈ 14.53 grams

6. The number of moles of CuSO₄·5H₂O in 100 g of CuSO₄·5H₂O = 100 g/(249.69 g/mol) ≈ 0.4005 moles

The mass of copper oxide required, m = 79.545 g/mol × 0.4005 moles ≈ 31.86 grams

7. a. The number of moles of NaOH in the reaction = 20 g/(39.997 g/mol) ≈ 0.5 moles

2 moles of NaOH produces 1 mole of Zn(OH)₂

0.5 moles of NaOH will produce 0.5 mole of Zn(OH)₂

The mass of 0.5 mole of Zn(OH)₂ = 0.5 mole × 99.424 g/mol = 49.712 grams

The mass of the precipitate, Zn(OH)₂ formed = 49.712 grams

b. 6 moles of NaOH produces 2 moles Al(OH)₃

20 g, or 0.5 mole of NaOH will produce (1/6) mole of Al(OH)₃

The mass of the precipitate, Al(OH)₃ formed, m = 78 g/mol×(1/6) moles = 13 grams

c. 2 moles of NaOH produces 1 mole of Mg(OH)₂, therefore;

20 g or 0.5 moles of NaOH formed (1/4) mole of Mg(OH)₂

The mass of the precipitate, Mg(OH)₂, formed, m = 58.3197 g/mol × (1/4) moles = 14.579925 grams

3 0
3 years ago
Read 2 more answers
2
Zepler [3.9K]

Answer:

Three product with are SO2, H2O and CuSO4

Explanation:

6 0
3 years ago
what mass of carbon dioxide will be produced when 12.9 g of butane reacts with an excess of oxygen in the following reaction?
Nadya [2.5K]
39.1 gCO2
I think if that’s an option
3 0
3 years ago
I really need help with this does anybody know how to do this?​
fenix001 [56]

Answer:PLEASE MARK BRAINIEST

The most common method astronomers use to determine the composition of stars, planets, and other objects is spectroscopy. Today, this process uses instruments with a grating that spreads out the light from an object by wavelength. This spread-out light is called a spectrum. Every element — and combination of elements — has a unique fingerprint that astronomers can look for in the spectrum of a given object. Identifying those fingerprints allows researchers to determine what it is made of.

That fingerprint often appears as the absorption of light. Every atom has electrons, and these electrons like to stay in their lowest-energy configuration. But when photons carrying energy hit an electron, they can boost it to higher energy levels. This is absorption, and each element’s electrons absorb light at specific wavelengths (i.e., energies) related to the difference between energy levels in that atom. But the electrons want to return to their original levels, so they don’t hold onto the energy for long. When they emit the energy, they release photons with exactly the same wavelengths of light that were absorbed in the first place. An electron can release this light in any direction, so most of the light is emitted in directions away from our line of sight. Therefore, a dark line appears in the spectrum at that particular wavelength.

Explanation:

8 0
4 years ago
Other questions:
  • Although there are different ways to approach a scientific investigation, all scientific investigations begin with some sort of
    14·2 answers
  • For which of the following reactions is ΔH∘rxn equal to ΔH∘f of the product(s)?You do not need to look up any values to answer t
    8·1 answer
  • Which is a pure substance?
    13·1 answer
  • What variables can be used to determine the pressure exerted by a gas?
    7·1 answer
  • Which sentences describe alpha particles? Check all that apply 1. Alpha particles consist of two protons and two neutrons 2. Alp
    15·2 answers
  • The amount of water vapor in the air is referred to as what? A. air pressure B. humidity C. temperature D. salinity
    8·2 answers
  • The difference betweeen chemical cell and electrolytic cell ?​
    14·1 answer
  • I need help this is 7th grade science
    12·1 answer
  • How many molecules are in 4.5 moles of Ca(OH),?​
    14·2 answers
  • An intermediate step in the production of nitric acid involves the reaction of ammonia with oxygen gas to form nitrogen monoxide
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!