Answer:
50 or more
Step-by-step explanation:
Answer:
The value of (f/g) (8) = -169
Step-by-step explanation:
<u>Step 1: explaining the question</u>
The quotient (f/g) is not defined at values of x ⇒ both the functions must be defined at a point for the combination to be defined.
⇒(f/g)(x) =(f(x)) / (g(x))
If f(x)= 3-2 and g(x)=1/x+5
⇒then according to the preceding formula: (f/g)(x) =(f(x)) / (g(x))
⇒(f/g)(8) = f(8) / g(8)
to solve this we have to find the value of both f(8) and g(8)
<u>Step 2: find value of f(8) and g(8)</u>
⇒ we know that f(x) = 3-2x and we know dat f(x) = f(8)
⇒ f(8) = 3-2(8)
f(8) = 3-16 = -13
⇒we know that g(x) = 1/x+5 and g(x) = g(8)
⇒ g(8) = 1/8+5
g(8) =1/13
These 2 equations we will insert in the following : ⇒(f/g)(8) = f(8) / g(8)
⇒ f/g (8) = -13 / (1/13) = -13 * 13/1 = -169
The value of (f/g) (8) = -169
Answer:
c) The reduced form of the given fraction ![\frac{24}{30} = \frac{4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D)
Step-by-step explanation:
Here, the given expression is "24 over 30".
The given expression is is equivalent to ![\frac{24}{30}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D)
Now by Prime Factorization:
24 = 2 x 2 x 2 x 3
30 = 2 x 3 x 5
⇒ The common factors in 24 and 30 is 2 x 3 = 6
So, ![\frac{24}{30} = \frac{2 \times 2 \times 2 \times 2 \times 3}{2 \times 3 \times 5} = \frac{6 \times 4}{6 \times 5} = \frac{4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D%20%20%3D%20%5Cfrac%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%203%7D%7B2%20%5Ctimes%203%20%5Ctimes%205%7D%20%20%20%3D%20%5Cfrac%7B6%20%5Ctimes%204%7D%7B6%20%5Ctimes%205%7D%20%20%20%3D%20%5Cfrac%7B4%7D%7B5%7D)
Hence the reduced form of the given fraction ![\frac{24}{30} = \frac{4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B30%7D%20%3D%20%20%5Cfrac%7B4%7D%7B5%7D)
Answer:
Given data, first determine which is the independent variable, x, and which is the dependent variable, y. Enter the data pairs into the regression calculator. Substitute the value for one variable into the equation for the regression line produced by the calculator, and then predict the value of the other variable.
Step-by-step explanation:
- Enter data into the regression calculator.
- Determine the regression equation.
- Substitute the correct value for x or y into the equation.
- Simplify to find the value of the other variable.
3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8