Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
A Bunsen burner, named after Robert Bunsen, is a common piece of laboratory equipment that produces a single open gas flame, which is used for heating, sterilization, and combustion. The gas can be natural gas (which is mainly methane) or a liquefied petroleum gas, such as propane, butane, or a mixture of both. Have A Great Day :)
Answer:
True
Explanation:
I think this is a helpful for you
Answer:
Explanation:
Given parameters:
Initial temperature T₁ = 25.2°C = 25.2 + 273 = 298.2K
Initial pressure = P₁ = 0.6atm
Final temperature = 72.4°C = 72.4 + 273 = 345.4K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use an adaption of the combined gas law where the volume gas is fixed. This simplification results into:

where P and T are temperatures, 1 and 2 are initial and final temperatures.
Input the parameters and solve;
P₂ = 0.7atm