Answer:
92.01 g/mol
Explanation:
So first you need to find the empirical formula by the percents. That would be, assuming that you have 100 grams of the the sample, divide each quantity of each element found by its respective molar mass.
30.4 g of N ÷ 14 g/mol N= 2.17 mol of N
69.6 g of O ÷ 16g/mol= 4.35 mol of O
You can establish now the empirical formula.
N2.17O4.35,
but since you can't have a decimal subscript, you divide each subscript by the minimum subscript
NO2
So then you're said that the molecular formula derived from that empirical formula has 2 nitrogen, so you multiply all the subscripts, by 2:
N2O4
-Dinitrogen Tetraoxide
-Nitrogen oxide (IV)
Then all you have to do is find the molecular mass of the compound using the periodic table and what you obtain is the molar mass.
remember: molecular mass is correspondent to molar mass.
Answer:
5.31x10⁻⁶ C
Explanation:
The cube is located 100 m altitude from the ground, so the superior face is at 100m and has E = 70 N/C, and the inferior face is at the ground with E = 130 N/C.
The electric field is perpendicular to the bottom and the top of the cube, so the total flux is the flux at the superior face plus the flux at the inferior face:
Фtotal = Ф100m + Фground
Where Ф = E*A*cos(α). α is the angle between the area vector and the field (180° at the topo and 0° at the bottom):
Фtotal = E100*A*cos(180°) + Eground*A*cos(0°)
Фtotal = 70A*(-1) + 130*A*1
Фtotal = 60A
By Gauss' Law, the flux is:
Фtotal = q/ε, where q is the charge, and ε is the permittivity constant in vacuum = 8.854x10⁻¹² C²/N.m²
A = 100mx100m = 10000 m²
q = 60*10000*8.854x10⁻¹²
q = 5.31x10⁻⁶ C
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
A food chain contains a producer and 3 consumers. Primary Consumers (East producers) the arrows in a food chain show the flow of energy, from the sun or hydrothermal vent your a top predator.