Answer: Option (b) is the correct answer.
Explanation:
As on increasing the temperature, the molecules gain more kinetic energy due to which they tend to collide and move rapidly from one place to another.
Thus, we can conclude that when temperature is increased, the kinetic energy of the molecules increases.
This means that temperature is directly proportional to the average kinetic energy of a gas.
<h3>Answer:</h3>
a) Moles of Caffeine = 1.0 × 10⁻⁴ mol
b) Moles of Ethanol = 4.5 × 10⁻³ mol
<h3>Solution:</h3>
Data Given:
Mass of Caffeine = 20 mg = 0.02 g
M.Mass of Caffeine = 194.19 g.mol⁻¹
Molecules of Ethanol = 2.72 × 10²¹
Calculate Moles of Caffeine as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 0.02 g ÷ 194.19 g.mol⁻¹
Moles = 1.0 × 10⁻⁴ mol
Calculate Moles of Ethanol as,
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Particles and Avogadro's Number is given as,
Number of Moles = Number of Molecules ÷ 6.022 × 10²³
Putting values,
Number of Moles = 2.72 × 10²¹ Molecules ÷ 6.022 × 10²³
Number of Moles = 4.5 × 10⁻³ Moles
Given:
Half life(t^ 1/2) :30 years
A0( initial mass of the substance): 200 mg.
Now we know that
A= A0/ [2 ^ (t/√t)]
Where A is the mass that remains after t years.
A0 is the initial mass
t is the time
t^1/2 is the half life
Substituting the given values in the above equation we get
A= [200/ 2^(t/30) ] mg
Thus the mass remaining after t years is [200/ 2^(t/30) ] mg
Answer:
Chemical reaction A, because the reactant is a compound
Explanation:
In a decomposition reaction, a compound is broken down into its components, so the number of products is greater than the number of reactants