Answer:
Mg^2+ and OH- are the chemical species present at the equilibrium. Mg(OH)2 will not affect the equilibrium.
Explanation:
Step 1: data given
Reactants are Solid Mg(OH)2 and H2O(l)
Kc1 = 1.8 * 10^-11
Step 2: The balanced equation
Mg(OH)2(s) ⇄ Mg2+(aq) + 2OH-(aq)
Step 3: Define the equilibrium constant Kc
Kc = [OH-]²[Mg^2+]
Pure solids and liquids do not have any effect or influence on the equilibrium in the reaction. So they are not included in the equilibrium constant expression.
This means Mg^2+ and OH- are the chemical species present at the equilibrium. Mg(OH)2 will not affect the equilibrium.
1)
<span>m(NaCl) = 1.95 g
V(H2O) = 250mL
M(NaCl) = </span><span>58.5 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
</span>V(H2O) = 250ml = 250g = 0.25 kg<span>
</span><span>molality of NaCl:
</span><span>
n(NaCl)=m/M=1.95/58.5= 0.033 mole
</span>molality b(NaCl)=n(NaCl) / V (H2O)= 0.033/0.25 = 0.132 mol/kg
<span>
milimolality of NaOH = 0.132/0,001 = 132 mmole/kg
</span>
milliosmolality of NaOH = milimolality x N of ions formed in dissociation
Since NaCl dissociates into 2 ions in solution:
<span>
</span>milliosmolality of NaOH = 132 x 2 = 264 osmol<span>es/kg
</span>
2)
m(gl) = 9 g
V(H2O) = 250mL
M(NaCl) = 180 g/mole
Since waters density value is 1g/mL, it can be assumed that volume and mass of water are same values:
V(H2O) = 250ml = 250g = 0.25 kg
molality of glucose:
n(gl)=m/M=9/180= 0.05 mole
molality b(gl)=n(gl) / V (H2O)= 0.05/0.25 = 0.2 mol/kg
milimolality of glucose = 0.132/0,001 = 200 mmole/kg
milliosmolality of glucose = milimolality x N of ions formed in dissociation
Since glucose does not dissociate, milimolality and milliosmolality are same:
milliosmolality of glucose = 200 osmoles/kg
3)
The osmosis represents the diffusion of solvent molecules through a semi-permeable membrane that allows passage solvent molecules but does not to the dissolved substance molecule. The osmosis occurs when the concentrations of the solution on both sides of the membrane are different. Since the semi-permeable membrane only permeates the solvent molecules, but not the particles of the dissolved substance, it occurs the solvent diffusion through the membrane, i.e. the solvent molecules pass through the membrane to equalize the concentration on both sides of the membrane. Solvents molecules move from the middle with a lower concentration in the middle with a higher concentration of dissolved substances.
In our case, osmosis will occur because the concentration of NaCl solution and the concentration of glucose solution do not have same values. Osmosis will occur in the direction of glucose solution because it has a lower concentration.
Rubbing alcohol is a solution