The graphs of f(x) and g(x) are transformed function from the function y = x^2
The set of inequalities do not have a solution
<h3>How to modify the graphs</h3>
From the graph, we have:
and 
To derive y < x^2 - 3, we simply change the equality sign in the function f(x) to less than.
To derive y > x^2 + 2, we perform the following transformation on the function g(x)
- Shift the function g(x) down by 2 units
- Reflect across the x-axis
- Shift the function g(x) down by 3 units
- Change the equality sign in the function g(x) to greater than
<h3>How to identify the solution set</h3>
The inequalities of the graphs become
y < x^2 - 3 and y > x^2 + 2
From the graph of the above inequalities (see attachment), we can see that the curves of the inequalities do not intersect.
Hence, the set of inequalities do not have a solution
Read more about inequalities at:
brainly.com/question/25275758
Let

be the number of boxes the team brings with them. Their weight combined with the boxes can't exceed the capacity of 1400. Assuming the elevator runs fine at that exact weight, you want to find the number of boxes, each of which contributes 40 pounds. This is given by the equation

Solving for

, you have



So the team can bring *at most* 5 boxes at a time.
Answer:
Player II should remove 14 coins from the heap of size 22.
Step-by-step explanation:
To properly answer this this question, we need to understand the principle and what it is exactly is being asked.
This question revolves round a game of Nim
What is a game of Nim: This is a strategic mathematical game whereby, two opposing sides or opponent take turns taking away objects from a load or piles. On each turn, a player remove at least an object and may remove any number of objects provided they all come from the same heap/pile.
Now, referring back to the question, we should first understand that:
22₂ = 1 0 1 1 0
19₂= 1 0 0 1 1
14₂= 0 1 1 1 0
11₂= 0 1 0 1 1
and also that the “bit sums” are all even, so this is a balanced game.
However, after Player I removes 6 coins from the heap of size 19, Player II should remove 14 coins from the heap of size 22.
Answer:
qn 10. 15mn² - 23m²n +4m³
Step-by-step explanation:
1. distribute 4m through the parenthesis
8mn² - 12m²n + 4m³ - 2n(5m² - 3nm) + nm(n-m)
2. use the commutative property to reorder the terms
8mn² - 12m²n + 4m³ - 2n(5m² - 3mn) + mn(n - m)
3. distribute -2n through the remaining parenthesis
8mn² - 12m²n + 4m³ -10m²n + 6mn² + mn² - m²n
4. collect like terms
8mn² + 6mn² + mn² - 12m²n - 10m²n - m²n + 4m³
5. complete bodmas
15mn² - 23m²n +4m³
that's is how you do it so the answer is
15mn² -23m²n + 4m³
Answer: 75 degrees
Step-by-step explanation:
75+75+30=180