12+2+8+6+57=85
85/5= 17
mean=17
Let us make a list of all the details we have
We are given
The cost of each solid chocolate truffle = s
The cost of each cream centre chocolate truffle = c
The cos to each chocolate truffle with nuts = n
The first type of sweet box that contains 5 each of the three types of chocolate truffle costs $41.25
That is 5s+5c+5n = 41.25 (cost of each type of truffle multiplied by their respective costs and all added together)
The second type of sweet box that contains 10 solid chocolate trufles, 5 cream centre truffles and 10 chocolate truffles with nuts cost $68.75
That is 10s+5c+10n = $68.75
The third type of sweet box that contains 24 truffles evenly divided that is 12 each of solid chocolate truffle and chocolate truffle with nuts cost $66.00
That is 12s+12n=$66.00
Hence option C is the right set of equations that will help us solve the values of each chocolate truffle.
We have the equation:

We know two points and we will use them to calculate the parameters a and b.
The point (0,3) will let us know a, as b^0=1.

Now, we use the point (2, 108/25) to calcualte b:
![\begin{gathered} y=3\cdot b^x \\ \frac{108}{25}=3\cdot b^2 \\ 3\cdot b^2=\frac{108}{25} \\ b^2=\frac{108}{25\cdot3}=\frac{108}{3}\cdot\frac{1}{25}=\frac{36}{25} \\ b=\sqrt[]{\frac{36}{25}} \\ b=\frac{\sqrt[]{36}}{\sqrt[]{25}} \\ b=\frac{6}{5} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20y%3D3%5Ccdot%20b%5Ex%20%5C%5C%20%5Cfrac%7B108%7D%7B25%7D%3D3%5Ccdot%20b%5E2%20%5C%5C%203%5Ccdot%20b%5E2%3D%5Cfrac%7B108%7D%7B25%7D%20%5C%5C%20b%5E2%3D%5Cfrac%7B108%7D%7B25%5Ccdot3%7D%3D%5Cfrac%7B108%7D%7B3%7D%5Ccdot%5Cfrac%7B1%7D%7B25%7D%3D%5Cfrac%7B36%7D%7B25%7D%20%5C%5C%20b%3D%5Csqrt%5B%5D%7B%5Cfrac%7B36%7D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B%5Csqrt%5B%5D%7B36%7D%7D%7B%5Csqrt%5B%5D%7B25%7D%7D%20%5C%5C%20b%3D%5Cfrac%7B6%7D%7B5%7D%20%5Cend%7Bgathered%7D)
Then, we can write the equation as:
The midpoints are (8,3) and (6.5,6).
<u>Step-by-step explanation</u>:
Midpoint formula = ((x1+x2)/2 , (y1+y2)/2)
(x1,y1) = (5,2)
(x2,y2) = (11,4)
Midpoint = ((5+11)/2 , (2+4)/2)
⇒ ((16/2) , (6/2))
⇒ (8,3)
(x1,y1) = (3,8)
(x2,y2) = (10,4)
Midpoint = ((3+10)/2 , (8+4)/2)
⇒ ((13/2) , (12/2))
⇒ (6.5,6)
Answer:
The man traveled 20km by train.
Step-by-step explanation:
If x is the distance he traveled by train, you can write this equation to represent the situation:

Then, you can simply solve for x:

The man traveled 20km by train.
