The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)
Answer:
P(X ≥ 1) = 0.50
Step-by-step explanation:
Given that:
The word "supercalifragilisticexpialidocious" has 34 letters in which 'i' appears 7 times in the word.
Then; the probability of success = 7/34 = 0.20588
Using Binomial distribution to determine the probability; we have:

where;
x = 0,1,2,...n and 0 < β < 1
and x represents the number of successes.
However; since the letter is drawn thrice; the probability that the letter "i" is drawn at least once can be computed as:
P(X ≥ 1) = 1 - P(X< 1)
P(X ≥ 1) = 1 - P(X =0)
![P(X \ge 1) = 1 - \bigg [ {^3C__0} (0.21)^0 (1-0.21)^{3-0} \bigg]](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20%5Cbigg%20%5B%20%7B%5E3C__0%7D%20%280.21%29%5E0%20%281-0.21%29%5E%7B3-0%7D%20%5Cbigg%5D)
![P(X \ge 1) = 1 - \bigg [ 1 \times 1 (0.79)^{3} \bigg]](https://tex.z-dn.net/?f=P%28X%20%5Cge%201%29%20%3D%20%201%20-%20%5Cbigg%20%5B%201%20%5Ctimes%201%20%280.79%29%5E%7B3%7D%20%5Cbigg%5D)
P(X ≥ 1) = 1 - 0.50
P(X ≥ 1) = 0.50
The answer is 18
2 to the 3rd power would be 2*2*2 which is 8
8 x 4=32
32/2=16
16+2=18