Answer:
(p×2)+3
Step-by-step explanation:
I'm not too sure, I've only just started practicing this stuff?
The rate would be
22000 gallons per 16 hours or
rate = 22000/16 = 1375 gallons/hr
Answer:
Dylan delivered 140 parcels on Wednesday.
Step-by-step explanation:
On Wednesday:
On Wednesday, he delivered x parcels.
Thursday:
10% more than Wednesday, so 100 + 10 = 110% of x = 1.1x
Friday:
50% pless than on Thursday, so 100 - 50 = 50% of 1.1x = 0.5*1.1*x.
THis is equals to 77. So



Dylan delivered 140 parcels on Wednesday.
Answer:
x = - 6 or x = 2
Step-by-step explanation:
The absolute value function always returns a positive value. However, the expression inside can be positive or negative.
Given
| 2x + 4 | - 1 = 7 ( add 1 to both sides )
| 2x + 4 | = 8, thus
2x + 4 = 8 ( subtract 4 from both sides )
2x = 4 ( divide both sides by 2 )
x = 2
OR
-(2x + 4) = 8
- 2x - 4 = 8 ( add 4 to both sides )
- 2x = 12 ( divide both sides by - 2 )
x = - 6
As a check
Substitute these values into the left side of the equation and if equal to the right side then they are the solutions.
x = 2 → | 4 + 4 | - 1 = | 8 | - 1 = 8 - 1 = 7 ← True
x = - 6 → | - 12 + 4 | - 1 = | - 8 | - 1 = 8 - 1 = 7 ← True
Hence the solutions are x = - 6 or x = 2
![y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\ y''(0)=20\cdot0^3=0](https://tex.z-dn.net/?f=y%3Dx%5E5-3%5C%5C%20y%27%3D5x%5E4%5C%5C%5C%5C%205x%5E4%3D0%5C%5C%20x%3D0%5C%5C%200%5Cin%20%5B-2%2C1%5D%5C%5C%5C%5C%20y%27%27%3D20x%5E3%5C%5C%5C%5C%0Ay%27%27%280%29%3D20%5Ccdot0%5E3%3D0)
The value of the second derivative for

is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of

is always positive for

. That means at

there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval
![[-2,1]](https://tex.z-dn.net/?f=%5B-2%2C1%5D)
.
The function

is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.