Person standing on A will hear the loudest sound
Explanation:
The intensity of a sound wave (which is proportional to the loudness of the sound) follows an inverse square law, which is:

where
I is the intensity of the wave
r is the distance from the source of the sound
This equation means that the intensity of the sound wave (and therefore, its loudness) is inversely proportional to the square of the distance from the source: therefore,
- As we get closer to the source of sound, the loudness increases
- As we move away from the source of sound, the loudness decreases
Therefore, the person that will hear the loudest sound is the one standing closer to the source, and therefore person A.
Learn more about sound waves:
brainly.com/question/4899681
#LearnwithBrainly
Answer:
The magnification is -6.05.
Explanation:
Given that,
Focal length = 34 cm
Distance of the image =2.4 m = 240 cm
We need to calculate the distance of the object

Where, u = distance of the object
v = distance of the image
f = focal length
Put the value into the formula



The magnification is



Hence, The magnification is -6.05.
Mirrors reflect light waves.
Answer: The coefficient of kinetic friction is μ = 0.6
Explanation:
For an object of mass M, the weight is:
W = M*g
where g is the gravitational acceleration: g = 9.8m/s^2
And the friction force between this object and the surface can be written as:
F = W*μ
where μ is the coefficient of friction (kinetic if the object is moving, and static if the object is not moving, usually the static coefficient is larger)
In this case, the weight is:
W = 20N
And the friction force is:
F = 12N
Replacing these values in the equation for the friction force we get:
12N = 20N*μ
(12N/20N) = μ = 0.6
The coefficient of kinetic friction is μ = 0.6
<span>The amount of mass an object has per its volume is known as density. The correct option among all the options that are given in the question is the third option or the last option or option "C". I hope that this is the answer that you were looking for and the answer has actually come to your great help.</span>