Answer:
V = 381.70 m³
Explanation:
ρ air = 1.28 kg / m³
ρ helium = 0.18 kg / m³
R = 4.5 m
Vb = 0.068 m³
mb = 123 kg
To determine the volume of helium in the balloon when fully inflated
V = 4 / 3 π * R ³
V = 4 * π / 3 ( 4.5 m )³
V = 381.70 m³
To determine the mass total
m = ρ helium * V
m = 0.18 kg / m³ * 381.70 m³
m = 68.70 kg
mt = ( 68.70 + 123 )kg
mt = 191.70 kg
The acceleration of the car will be needed in order to calculate the time. It is important to consider that the final speed is equal to zero:

We can clear time in the speed equation:

If you find some mistake in my English, please tell me know.
The motion of planets is separate to the motion of stars. Like everything in the sky, they rise in the east, and set in the west, because of the earth's rotation. But night by night, their position at a given time changes because of their orbit around the sun.
Answer:
0.853 m/s
Explanation:
Total energy stored in the spring = Total kinetic energy of the masses.
1/2ke² = 1/2m'v².................... Equation 1
Where k = spring constant of the spring, e = extension, m' = total mass, v = speed of the masses.
make v the subject of the equation,
v = e[√(k/m')].................... Equation 2
Given: e = 39 cm = 0.39 m, m' = 0.4+0.4 = 0.8 kg, k = 1.75 N/cm = 175 N/m.
Substitute into equation 2
v = 0.39[√(1.75/0.8)
v = 0.39[2.1875]
v = 0.853 m/s
Hence the speed of each mass = 0.853 m/s
Answer:
An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.
Explanation:
SO YOU HAVE THE LEAST KINETIC ENERGY AT THE HIGHEST POINT OF THE SWING WHEN IT'S NOT ACTIVE