To answer this question, simply input the values for g and h:
9/ (3) + 2 (6) + 5 = 9/ 3 + 12 + 5
= 9/ 20
Hope this helps!
Answer:
b x 5 = 30
Step-by-step explanation:
This is one of the many correct answers. The reason why is because it shows that the variable is correct. And if you didn’t know what the variable was you could just divide 30 / 5.
Answer:
(- 16.7, 5.2 )
Step-by-step explanation:
let the coordinates of the endpoint be (x , y )
using the midpoint formula
consider the x- coordinate
(x + 1.7) = - 7.5 ( multiply both sides by 2 )
x + 1. 7 = - 7.5 ( subtract 1.7 from both sides )
x = - 16.7
consider the y-coordinate
(y - 4.6 ) = 0.3 ( multiply both sides by 2 )
y - 4.6 = 0.6 ( add 4.6 to both sides )
y = 5.2
endpoint = (- 16.7, 5.2 )
I'll leave the computation via R to you. The
are distributed uniformly on the intervals
, so that

each with mean/expectation
![E[W_i]=\displaystyle\int_{-\infty}^\infty wf_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac w{10i}\,\mathrm dw=5i](https://tex.z-dn.net/?f=E%5BW_i%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20wf_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%20w%7B10i%7D%5C%2C%5Cmathrm%20dw%3D5i)
and variance
![\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3DE%5B%28W_i-E%5BW_i%5D%29%5E2%5D%3DE%5B%7BW_i%7D%5E2%5D-E%5BW_i%5D%5E2)
We have
![E[{W_i}^2]=\displaystyle\int_{-\infty}^\infty w^2f_{W_i}(w)\,\mathrm dw=\int_0^{10i}\frac{w^2}{10i}\,\mathrm dw=\frac{100i^2}3](https://tex.z-dn.net/?f=E%5B%7BW_i%7D%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20w%5E2f_%7BW_i%7D%28w%29%5C%2C%5Cmathrm%20dw%3D%5Cint_0%5E%7B10i%7D%5Cfrac%7Bw%5E2%7D%7B10i%7D%5C%2C%5Cmathrm%20dw%3D%5Cfrac%7B100i%5E2%7D3)
so that
![\mathrm{Var}[W_i]=\dfrac{25i^2}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_i%5D%3D%5Cdfrac%7B25i%5E2%7D3)
Now,
![E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30](https://tex.z-dn.net/?f=E%5BW_1%2BW_2%2BW_3%5D%3DE%5BW_1%5D%2BE%5BW_2%5D%2BE%5BW_3%5D%3D5%2B10%2B15%3D30)
and
![\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5Cleft%5B%5Cbig%28%28W_1%2BW_2%2BW_3%29-E%5BW_1%2BW_2%2BW_3%5D%5Cbig%29%5E2%5Cright%5D)
![\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3DE%5B%28W_1%2BW_2%2BW_3%29%5E2%5D-E%5BW_1%2BW_2%2BW_3%5D%5E2)
We have

![E[(W_1+W_2+W_3)^2]](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D)
![=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])](https://tex.z-dn.net/?f=%3DE%5B%7BW_1%7D%5E2%5D%2BE%5B%7BW_2%7D%5E2%5D%2BE%5B%7BW_3%7D%5E2%5D%2B2%28E%5BW_1%5DE%5BW_2%5D%2BE%5BW_1%5DE%5BW_3%5D%2BE%5BW_2%5DE%5BW_3%5D%29)
because
and
are independent when
, and so
![E[(W_1+W_2+W_3)^2]=\dfrac{100}3+\dfrac{400}3+300+2(50+75+150)=\dfrac{3050}3](https://tex.z-dn.net/?f=E%5B%28W_1%2BW_2%2BW_3%29%5E2%5D%3D%5Cdfrac%7B100%7D3%2B%5Cdfrac%7B400%7D3%2B300%2B2%2850%2B75%2B150%29%3D%5Cdfrac%7B3050%7D3)
giving a variance of
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{3050}3-30^2=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B3050%7D3-30%5E2%3D%5Cdfrac%7B350%7D3)
and so the standard deviation is 
# # #
A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute
![\mathrm{Var}[W_1+W_2+W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D)
![=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])](https://tex.z-dn.net/?f=%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D%2B2%28%5Cmathrm%7BCov%7D%5BW_1%2CW_2%5D%2B%5Cmathrm%7BCov%7D%5BW_1%2CW_3%5D%2B%5Cmathrm%7BCov%7D%5BW_2%2CW_3%5D%29)
and since the
are independent, each covariance is 0. Then
![\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cmathrm%7BVar%7D%5BW_1%5D%2B%5Cmathrm%7BVar%7D%5BW_2%5D%2B%5Cmathrm%7BVar%7D%5BW_3%5D)
![\mathrm{Var}[W_1+W_2+W_3]=\dfrac{25}3+\dfrac{100}3+75=\dfrac{350}3](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BW_1%2BW_2%2BW_3%5D%3D%5Cdfrac%7B25%7D3%2B%5Cdfrac%7B100%7D3%2B75%3D%5Cdfrac%7B350%7D3)
and take the square root to get the standard deviation.
Answer:
A=(21/5,-22/5) B=(5,-6)
Step-by-step explanation: