0.616 is the distance from the top
of the building to the top of the window.
Answer:
The magnitude of the acceleration of the tip of the minute hand of the clock
.
Explanation:
Given that,
Length of minute hand = 0.55 m
Length of hour hand = 0.26 m
The time taken by the minute hand to complete one revelation is

We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


We need to calculate the magnitude of the acceleration of the tip of the minute hand of the clock
Using formula of acceleration

Put the value into the formula


Hence, The magnitude of the acceleration of the tip of the minute hand of the clock
.
<span>ripple factor can be reduced by increasing the value of the load resistor (which means reducing the load of the circuit)</span>
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
Answer:
motion energy
Explanation:
motion wnergy is the sum of potential and kinetic energy