The mean may be calculated by summing the values of the refractive index and dividing the sum by the number of experiments. This is:
Mean = (1.45 + 1.56 + 1.54 + 1.44 + 1.54 + 1.53)/6
Mean = 1.51
The mean absolute error is the sum of the absolute values of errors divided by the number of trials:
MAE = (|1.45-1.51|+|1.56-1.51|+|1.54-1.51|+|1.44-1.51|+|1.54-1.51|+|1.53-1.51|)/6
MAE = 0.043
The fractional error is the MAE divided by the actual value:
Fractional error = 0.043 / 1.51
Fractional error = 43/1510
The percentage error is the fractional error multiplied by 100:
Percentage error = 2.85%
Answer:
1.45 K
I had the same question and i got it right.
Inertia
the awnswer is inertia b
The wavelength

of the wave is 160 m, and this is the distance between two consecutive crests. The boat is located at a crest of the wave, this means that the first trough is located 80 meters from the boat (because the distance between a crest and a trough is half the wavelength).
The speed of the wave is

so the time the boat takes to reach the first trough is
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.