The acceleration of the boxes depends on the mass and weight.
we have a mass of 7 and 8 kilograms
if it took 25 N force to move box A, then you would take 25 and multiply by 8 then divide by 2.
It will leave you with 100 N.
finally take the sq rt of 100 to get 10
If gravity had no effect on a ball after you threw it ... and there also
were no air to slow it down ... then the ball would continue traveling
in a straight line, in whatever direction you threw it.
That's the heart and soul of Newton's laws of motion ... any object
keeps moving at the same speed, and in a straight line in the same
direction, until a force acts on it to change its speed or direction.\
If you threw the ball horizontally, then it would keep moving in the
same direction you threw it. But don't forget: The Earth is not flat.
The Earth is a sphere. So, as the ball kept going farther and farther
in the same straight line, the Earth would curve away from it, and it
would look like the ball is getting farther and farther from the ground.
Answer:
using the lens formula: 1/f = 1/u + 1/v
focal length f = -30 (negative because it is concave lens)
object distance u = 60
image distance v= unknown
1/-30 = 1/60 + 1/v
v = -20
So, the image is 20cm from lens (on the same side along with the object), and it is virtual (because of negative sign) and erect (concave lens must produce erect images).
Answer:
when work is done by an applied force, the objects energy will change. in this interactive, does the work cause a kinetic energy change or a potential energy change?
The work done cause the potential energy to change because the body was initially at rest before work done, it was after a force is applied that there is energy changes from potential to kinetic energy
Explanation: