Answer:
The electric field value is 240 N/C
Explanation:
Given that,
Distance = 5.0 mm
Potential difference = 1.2 V
We need to calculate the electric field value
Using formula of potential difference


Where, E = electric field
V = potential difference
d = distance
Put the value into the formula


Hence, The electric field value is 240 N/C
Answer:
The current of the solenoid is 0.0129 A.
Explanation:
The movement of the electron within the solenoid in a circle is produced by equaling the magnetic force and the centripetal force, as follows:


Where:
I: is the current
m: is the electron's mass = 9.1x10⁺³¹ kg
v: is the electron's speed = 3.0x10⁵ m/s
μ₀: is the permeability magnetic = 4πx10⁻⁷ T.m/A
n: is the number of turns per unit length = 35/cm
r: is the radius of the circle = 3.0 cm
e: is the electron's charge = 1.6x10⁻¹⁹ C
Therefore, the current of the solenoid is 0.0129 A.
I hope it helps you!
psychologist counseling would be the correct answer I believe
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
PE = mass * height * 9.81
PE = 142 * 25 * 9.81
PE = 34825.5 J