Step-by-step explanation:
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>here's</em><em> your</em><em> solution</em>
<em> </em><em>=</em><em>></em><em> </em><em>in </em><em>first </em><em>figure</em><em> </em><em>,</em><em> </em><em>base </em><em>=</em><em> </em><em>5</em><em>.</em><em>5</em><em>,</em><em> </em><em>perpendicular</em><em> </em><em>=</em><em>7</em><em>.</em><em>8</em>
<em>=</em><em>></em><em> </em><em>h^</em><em>2</em><em> </em><em>=</em><em> </em><em>5</em><em>.</em><em>5</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>7</em><em>.</em><em>8</em><em>^</em><em>2</em>
<em>=</em><em>></em><em> </em><em>h^</em><em>2</em><em> </em><em>=</em><em> </em><em>3</em><em>0</em><em>.</em><em>2</em><em>5</em><em> </em><em>+</em><em> </em><em>6</em><em>0</em><em>.</em><em>8</em><em>4</em><em> </em>
<em>=</em><em>></em><em>h^</em><em>2</em><em> </em><em>=</em><em> </em><em>9</em><em>1</em><em>.</em><em>0</em><em>9</em>
<em>=</em><em>></em><em> </em><em>h </em><em>=</em><em> </em><em>√</em><em>9</em><em>1</em><em>.</em><em>0</em><em>9</em>
<em>=</em><em>></em><em> </em><em>h </em><em>=</em><em> </em><em>9</em><em>.</em><em>5</em>
<em> </em><em> </em><em>Both </em><em>figure</em><em> </em><em>are </em><em>congruent</em>
<em>enc </em><em>we </em><em>will </em><em>get </em><em>a </em><em>rectangle</em><em> </em><em>by </em><em>add </em><em>both </em>
<em>hope</em><em> it</em><em> helps</em>
We have that
[√(2x+1)]+3=0
for x=4
[√(2*4+1)]+3=0
[√(9)]+3=0
3+3=0----------6 is not zero
therefore
the solution is not correct for x=4
[√(2x+1)]+3=0--------> [√(2x+1)]=-3---------> <span>There is no real solution for that equation
</span>Because (2x+1) >= 0
the solution is with complex numbers
I hope this helps you
x^3=1000
x^3= 10^3
x=10