Based on the information provided, it follows that there are 1,728 possible seating arrangements.
<h3>How can we find the number of possible arrangements?</h3>
To find the number of arrangements in this problem situation we must take into account the following key factors:
- Chris only has 1 possible seat.
- Jo has 2 possible seats.
- Dave, Alex, and Barb have 3 possible seats.
- Gareth, Fred, and Eddie have 3 possible seats.
- There are 4 other adults who do not have a preference in seats but have the possibility of using 4 seats.
According to the above, we must use the factorization of these numbers to find out the number of possibilities we have to seat them.
<h3>What is factoring?</h3>
A factorial function is a mathematical tool that is characterized by using the exclamation mark “!” behind a number. The factorial function is used to express that the number accompanied by the symbol must be multiplied by all positive integers between that number and 1.
In accordance with the above, in the problem situation that we must solve, we must use the factorial function with the possibilities of:
- Dave, Alex and Barb: 3! = 3 × 2 × 1 = 6
- Gareth, Fred and Eddie: 3! = 3 × 2 × 1 = 6
- Other 4 adults: 4! = 4 × 3 × 2 × 1 = 24
Subsequently, to calculate the number of total possibilities of the entire group we must multiply the possibilities of each group and individual as shown below:
- Number of possibilities = 1 × 2 × 6 × 6 × 24
- Number of possibilities = 1728
Learn more about the factorial function in: brainly.com/question/16674303
1 whole thing = 6 sixths
3 whole things = 18 sixths
1 third of a whole thing = 2 sixths of it
3 wholes plus 1 third = 18 sixths plus 2 sixths = 20 sixths
If each linear dimension is scaled by a factor of 10, then the area is scaled by a factor of 100. This is because 10^2 = 10*10 = 100. Consider a 3x3 square with area of 9. If we scaled the square by a linear factor of 10 then it's now a 30x30 square with area 900. The ratio of those two areas is 900/9 = 100. This example shows how the area is 100 times larger.
Going back to the problem at hand, we have the initial surface area of 16 square inches. The box is scaled up so that each dimension is 10 times larger, so the new surface area is 100 times what it used to be
New surface area = 100*(old surface area)
new surface area = 100*16
new surface area = 1600
Final Answer: 1600 square inches
Answer:
(1+√7,0),(1−√7,0)
Step-by-step explanation:
You can't factor the expression evenly, so use the quadratic formula.
a = 2
b= -4
c= -12






End result: (1+√7,0),(1−√7,0)