Straight
You already have to momentum of walking forward, and going back and forth are the same distance. If you go back then you would have to stop, turn and walk, but if you go forward you just have to walk.
<span>1.0x10^3 Joules
The kinetic energy a body has is expressed as the equation
E = 0.5 M V^2
where
E = Energy
M = Mass
V = Velocity
Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion
E = 0.5 * 7.2 kg * (17 m/s)^2
E = 3.6 kg * 289 m^2/s^2
E = 1040.4 kg*m^2/s^2
E = 1040.4 J
So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
Answer:
Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Explanation:
Mass of object 1 , m₁ = 300 g = 0.3 kg
Mass of object 2 , m₂ = 400 g = 0.4 kg
Initial velocity of object 1 , v₁ = 5.00i-3.20j m/s
Initial velocity of object 2 , v₂ = 3.00j m/s
Mass of composite = 0.7 kg
We need to find final velocity of composite.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = 0.3 x (5.00i-3.20j) + 0.4 x 3.00j = 1.5 i + 0.24 j kgm/s
Final momentum = 0.7 x v = 0.7v kgm/s
Comparing
1.5 i + 0.24 j = 0.7v
v = 2.14 i + 0.34 j
Magnitude of velocity

Direction,

Velocity is 2.17 m/s at an angle of 9.03° above X-axis.
Answer:

Explanation:
The strength of the electric field produced by a charge Q is given by

where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is

and the fish can detect the electric field at a distance of

Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:

Answer:
As You know kinetic Energy is equal (mv^2)/2
You can increase it by increasing the mass(keeping the velocity)
Or You can add velocity
Explanation: