Karl Schwarzschild devised the first general relativity model that would adequately describe a black hole in 1916.
What is Black Hole?
A black hole is an area of spacetime with such intense gravitational pull that nothing can escape from it, not even light or other electromagnetic waves. According to general relativity theory, a compact enough mass can bend spacetime into a black hole. The event horizon is the line beyond which there is no escape.
Black holes were once thought to be a mathematical curiosity, but theoretical research in the 1960s revealed that they were actually a general prediction of general relativity.
To know more about Black Hole refer:
brainly.com/question/7866362
#SPJ4
Answer:
Explanation:
The momentum of the 25 kg mass is


If this whole momentum of the object is transferred to the 5.0 kg object then according to the law of conservation of momentum, the momentum of the 25.0 kg object must be transferred to the 5.0 kg object:



At t =0, the velocity of A is greater than the velocity of B.
We are told in the question that the spacecrafts fly parallel to each other and that for the both spacecrafts, the velocities are described as follows;
A: vA (t) = ť^2 – 5t + 20
B: vB (t) = t^2+ 3t + 10
Given that t = 0 in both cases;
vA (0) = 0^2 – 5(0) + 20
vA = 20 m/s
For vB
vB (0) = 0^2+ 3(0) + 10
vB = 10 m/s
We can see that at t =0, the velocity of A is greater than the velocity of B.
Learn more: brainly.com/question/24857760
Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal weight. Spacecrafts A and B are flying parallel to each other through space and are next to each other at time t= 0. For the interval 0 <t< 6 s, spacecraft A's velocity v A and spacecraft B's velocity vB as functions of t are given by the equations va (t) = ť^2 – 5t + 20 and VB (t) = t^2+ 3t + 10, respectively, where both velocities are in units of meters per second. At t = 6 s, the spacecrafts both turn off their engines and travel at a constant speed. (a) At t = 0, is the speed of spacecraft A greater than, less than, or equal to the speed of spacecraft B?
Answer:
Light comes in different colors like radio, ultra violet, gamma-ray, etc, and they are invisible to the bare eye
Explanation: