Answer: There are four atoms
Explanation: mass of Cl atom is 35.45 amu
Amount of atoms n = m/M = 142 / 35.45 = 4
Answer:48kg of SiO2, 0.5kg of Al2O3, and 1.5kg of B2O3
Will be the final product
Explanation:
I) 96wt% of SiO2 will amount to 96/100*50 = 0.96*50=48kg of SiO2
ii) 1wt% of Al2O3 will amount to 1/100*50 = 0.01*50=0.5kg of Al2O3
III) 3wt% of B2O3 will amount to 3/100*50 = 0.03*50=1.5kg of B2O3..
The overall product form 48+ 0.5+1.5= 50kg
The final volume of the gas that was heated from -25.0 °C to standard temperature is 2.2L.
<h3>How to calculate volume?</h3>
The volume of a given gas can be calculated using the Charles law equation as follows:
V1/T1 = V2/T2
Where;
- V1 = initial volume
- V2 = final volume
- T1 = initial temperature
- T2 = final temperature
- V1 = 2L
- V2 = ?
- T1 = -25°C + 273 = 248K
- T2 = 273K
2/248 = V2/273
273 × 2 = 248V2
546 = 248V2
V2 = 546/248
V2 = 2.2L
Therefore, the final volume of the gas that was heated from -25.0 °C to standard temperature is 2.2L
Learn more about volume at: brainly.com/question/11464844
Answer:
Filtration is a method for separating an insoluble solid from a liquid. When a mixture of sand and water is filtered: the sand stays behind in the filter paper (it becomes the residue ) the water passes through the filter paper (it becomes the filtrate )
Explanation:
Answer: The balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.
Explanation:
When a substance tends to gain oxygen atom in a chemical reaction and loses hydrogen atom then it is called oxidation reaction.
For example, chemical equation for oxidation of methane is as follows.

Number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
To balance this equation, multiply
by 2 on reactant side. Also, multiply
by 2 on product side. Hence, the equation can be rewritten as follows.

Now, the number of atoms present on reactant side are as follows.
Number of atoms present on product side are as follows.
Since, the atoms present on both reactant and product side are equal. Therefore, this equation is now balanced.
Thus, we can conclude that balanced equation for the complete oxidation reaction that occurs when methane (CH4) burns in air is
.