Explanation:
Make an observation
ask a question
form a hyposisese
make a prediction
test the prediction
use the results to fix the prediction and hypotheses
Explanation:
When an atom's outermost orbital gains or loses electrons (also known as valence electrons), the atom forms an ion. An ion with more protons than electrons carries a net positive charge and is called a cation. An ion with more electrons than protons carries a net negative charge and is called an anion
Answer:
1.
molecules of CO₂
2. 10⁴ molecules of H₂O
3. 8.75×10³² molecules of C₆H₁₂O₆
Explanation:
1.
molecules of CO₂
2. 10⁴ molecules of H₂O
3. 8.75×10³² molecules of C₆H₁₂O₆
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
C- more than one light year or B-exactly one light year