Answer:
pHe = 3.2 × 10⁻³ atm
pNe = 2.5 × 10⁻³ atm
P = 5.7 × 10⁻³ atm
Explanation:
Given data
Volume = 1.00 L
Temperature = 25°C + 273 = 298 K
mHe = 0.52 mg = 0.52 × 10⁻³ g
mNe = 2.05 mg = 2.05 × 10⁻³ g
The molar mass of He is 4.00 g/mol. The moles of He are:
0.52 × 10⁻³ g × (1 mol / 4.00 g) = 1.3 × 10⁻⁴ mol
We can find the partial pressure of He using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.3 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 3.2 × 10⁻³ atm
The molar mass of Ne is 20.18 g/mol. The moles of Ne are:
2.05 × 10⁻³ g × (1 mol / 20.18 g) = 1.02 × 10⁻⁴ mol
We can find the partial pressure of Ne using the ideal gas equation.
P × V = n × R × T
P × 1.00 L = 1.02 × 10⁻⁴ mol × (0.082 atm.L/mol.K) × 298 K
P = 2.5 × 10⁻³ atm
The total pressure is the sum of the partial pressures.
P = 3.2 × 10⁻³ atm + 2.5 × 10⁻³ atm = 5.7 × 10⁻³ atm
Answer: Potassium to fluorine, fluorine to nitrogen, bromine to hydrogen, carbon to hydrogen, lithium to chlorine, sodium to chlorine.
Explanation:
Ionic bond is greater when the electronegativity difference existing between the two atoms are large causing the bonding to be more polar.
Answer:
The answer is "152 pm".
Explanation:
The bond length from the values inside the atomic radii is calculated according to the query. This would be the upper limit of a molecule's binding length.
The atomic radius of 
The atomic radius of 


Answer:
The boiling point of HF is <u><em>higher than</em></u> the boiling point of H2, and it is <u><em>higher than</em></u> the boiling point of F2.
Explanation:
In HF, inter- molecule forces will be present between the hydrogen and fluorine atoms. There will be hydrogen bonding present among the hydrogen and fluorine atoms. Hydrogen bonds are strong bonds and hence the boiling point for HF would be high as much energy will be required to break these bonds.
H2 and F2 will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.