1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leviafan [203]
3 years ago
15

Meg is a veterinarian. She found that 7,or 25% of the dogs she saw this week were boxers. Steve is also a veterinarian. He found

that 50% of the 10 dogs he saw this week were boxers. Does each person need to find the​ part, the​ whole, or the​ percent?
HELP NOW!!!!!!!!!
Mathematics
1 answer:
Alex787 [66]3 years ago
5 0

Answer:

whole

Step-by-step explanation:

You might be interested in
Can someone help me understand this?
yan [13]

Ok Skylar what is (this)?

5 0
3 years ago
The field hockey coach is purchasing new uniforms for the team. Company A charges a one-time printing fee of $100 and $12 per un
CaHeK987 [17]
$100 - $61 
$39 (how much you need for the price to become equal)
$15 - $12 
$3 (how much cheaper it is per uniform)
$39/$3 
13 uniforms is where it is equal 
14 uniforms is where it is a better deal
8 0
3 years ago
Solve nonhomogenous equation: x"+4x=cost
motikmotik

Answer:

x(t) = Acos 2t + B sin 2t+\frac{cost}{3}

Step-by-step explanation:

Given is a non homogeneous second degree equation as

x"+4x=cost

Auxialary equation is

m^2+4 =0\\m = 2i, -2i

Hence general solution is

x = Acos 2t + B sin 2t

Particular integral is = \frac{cost}{D^2+4}

Since t has coefficient 1, we substitute

D^2 =-1\\PI = \frac{cost}{-1+4} =\frac{cost}{3}

Hence full solution is

x(t) = Acos 2t + B sin 2t+\frac{cost}{3}

6 0
3 years ago
Select all the correct answers.<br> In which pairs of matrices does AB = BA?
horsena [70]

In order to multiply a matrix by another matrix, we multiply the rows in the first matrix by the columns in the other matrix (How this is done is shown below)

To determine the pairs of matrices that AB=BA, we will determine AB and BA for each of the options below.

For the first option

A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-2\times5)+(1\times3)&(-2\times0)+(1\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-10+3&0+2&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&-7&2&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(5\times1)+(0\times-2)&(5\times0)+(0\times 1)&(3\times1)+(2\times-2)&(3\times0)+(1\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-4&0+2&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&-1&2&\end{array}\right] \\

∴ AB≠BA

For the second option

A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-1\times3)+(2\times6)&(-1\times0)+(2\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-3+12&0+-6&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(3\times1)+(0\times-1)&(3\times0)+(0\times 2)&(6\times1)+(-3\times-1)&(6\times0)+(-3\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+3&0+-6&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\

Here AB = BA

For the third option

A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-1\times5)+(2\times3)&(-1\times0)+(2\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-5+6&0+4&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(5\times1)+(0\times-1)&(5\times0)+(0\times 2)&(3\times1)+(2\times-1)&(3\times0)+(2\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-2&0+4&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\

Here also, AB=BA

For the fourth option

A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\

AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-2\times3)+(1\times6)&(-2\times0)+(1\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-6+6&0+-3&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&0&-3&\end{array}\right] \\

and

BA= \left[\begin{array}{cc}(3\times1)+(0\times-2)&(3\times0)+(0\times 1)&(6\times1)+(-3\times-2)&(6\times0)+(-3\times1)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+6&0+-3&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&12&-3&\end{array}\right] \\

Here, AB≠BA

Hence, it is only in the second and third options that AB = BA

A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right] B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\ and A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\

Learn more on matrices multiplication here: brainly.com/question/12755004

8 0
3 years ago
Read 2 more answers
Consider the equation:
Sergio039 [100]

Step-by-step explanation:

1.

Subtract the coefficient from both sides, keep 55 on the same side.

{x}^{2}  - 6x = 55

Complete the square by dividing the coefficient by two and squaring it.

{x}^{2}  - 6x + 9 = 55 + 9

Use binomial to factor the left side.

(x - 3) {}^{2}  = 64

2. Solve for x.

(x - 3) = 8

x = 11

Remeber the square root of 64 is also -8 so

x - 3 =  - 8

x =  - 5

So the solutions are -5 and 11

5 0
3 years ago
Read 2 more answers
Other questions:
  • From their house to their parents house, the Leightons have to drive 276 miles. if they have already driven 2/3 of the distance,
    5·2 answers
  • Solve x − 5y = 6 for x.
    13·1 answer
  • Please help!! area of parallelogram
    5·1 answer
  • Family bought 12 oranges from the market. However, one-fourth of these oranges were rotten. How many oranges were not rotten?
    5·1 answer
  • At a party, if 1/5 of one sheet
    13·1 answer
  • Solve for x: 3^(x+3)=9
    12·1 answer
  • Identify the LCM for 6 and 18.<br> 36<br> 108<br> 18<br> 6
    7·1 answer
  • Will give BRAINLYEST PLZ HELP FAST
    15·2 answers
  • Ill mark brainlist plss help
    8·1 answer
  • A t-shirt was $36 in a sale<br> with 25% off. How much<br> was the t-shirt before the<br> sale?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!