You have distribute the 5 into the 2 which is 10w +15 +30w.
where is the chart i cant say with out a chart
put the chart in another question and ill awwnser it because theres not enough information
Answer:
We are given an area and three different widths and we need to determine the corresponding length and perimeter.
The first width that is provided is 4 yards and to get an area of 100 we need to multiply it by 25 yards. This would mean that our length is 25 yards and our perimeter would be 2(l + w) which is 2(25 + 4) = 58 yards.
The second width that is given is 5 yards and in order to get an area of 100 yards we need to multiply by 20 yards. This would mean that our length is 20 yards and our perimeter would be 2(l + w) which is 2(20 + 5) = 50 yards.
The final width that is given is 10 yards and in order to get an area of 100 yards we need to multiply by 10. This would mean that our length is 10 yards and our perimeter would be 2(l + w) which is 2(10 + 10) = 40 yards.
Therefore the field that would require the least amount of fencing (the smallest perimeter) is option C, field #3.
<u><em>Hope this helps!</em></u>
Answer: 8/50
Step-by-step explanation:
simplified is 4/25
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7