Okay I think there has been a transcription issue here because it appears to me there are two answers. However I can spot where some brackets might be missing, bear with me on that.
A direct variation, a phrase I haven't heard before, sounds a lot like a direct proportion, something I am familiar with. A direct proportion satisfies two criteria:
The gradient of the function is constant s the independent variable (x) varies
The graph passes through the origin. That is to say when x = 0, y = 0.
Looking at these graphs, two can immediately be ruled out. Clearly A and D pass through the origin, and the gradient is constant because they are linear functions, so they are direct variations.
This leaves B and C. The graph of 1/x does not have a constant gradient, so any stretch of this graph (to y = k/x for some constant k) will similarly not be direct variation. Indeed there is a special name for this function, inverse proportion/variation. It appears both B and C are inverse proportion, however if I interpret B as y = (2/5)x instead, it is actually linear.
This leaves C as the odd one out.
I hope this helps you :)
Make the circle closed and the > needs to be underlined
Answer:
The equivalent expression is 65/63
The answer in this question is B The diagonals of the parallelogram are congruent because that's only possible for right angle quadrilaterals. We can say that the diagonals of the parallelogram are congruent. The diagonals of this figures have the same size and shape.
Answer:
SSS is the congruence theorem that can be used to prove Δ LON is congruent to Δ LMN ⇒ 1st answer
Step-by-step explanation:
Let us revise the cases of congruence
- SSS ⇒ 3 sides in the 1st Δ ≅ 3 sides in the 2nd Δ
- SAS ⇒ 2 sides and including angle in the 1st Δ ≅ 2 sides and including angle in the 2nd Δ
- ASA ⇒ 2 angles and the side whose joining them in the 1st Δ ≅ 2 angles and the side whose joining them in the 2nd Δ
- AAS ⇒ 2 angles and one side in the 1st Δ ≅ 2 angles and one side in the 2nd Δ
- HL ⇒ hypotenuse leg of the 1st right Δ ≅ hypotenuse leg of the 2nd right Δ
In triangles LON and LMN
∵ LO ≅ LM ⇒ given
∵ NO ≅ NM ⇒ given
∵ LN is a common side in the two triangles
- That means the 3 sides of Δ LON are congruent to the 3 sides
of Δ LMN
∴ Δ LON ≅ LMN ⇒ by using SSS theorem of congruence
SSS is the congruence theorem that can be used to prove Δ LON is congruent to Δ LMN