Answer:
<h3>The answer is option A</h3>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 2 kg
acceleration = 3 m/s²
We have
Force = 2 × 3
We have the final answer as
<h3>6.0 N</h3>
Hope this helps you
Oxidation of a 24-carbon fatty acid would require ELEVEN (11) rounds of beta-oxidation and TWELVE (12) rounds of the Krebs cycle. It is part of cellular respiration.
<h3>The Krebs cycle and cellular respiration</h3>
Cellular respiration is a group of chemical reactions by which aerobic cells can produce ATP by using energy from foods.
Cellular respiration has three parts: glycolysis, the Krebs cycle (also called the acid citric cycle) and oxidative phosphorylation.
During the Krebs cycle, hydrogen atoms or electrons pass through a series of hydrogen/electron carriers.
Learn more about the Krebs cycle here:
brainly.com/question/2736655
<span>moles glucose = 19 g / 180 g/mol= 0.105
M = 0.105 / 0.100 L = 1.05
moles in 20.0 mL = 1.05 M x 0.0200 L = 0.0216
New concentration = 0.0216 /0.500 L = 0.0432 M
moles in 100 mL = 0.100 L x 0.0432 = 0.00432
mass = 0.00432 x 180 g/mol= 0.778 g</span>
Answer:
Heat transfer in the atmosphere from the equatorial regions to higher latitudes occurs through the process of Convection
Explanation:
The equatorial regions of the earth's surface receive the most heat from the sun than any other region of the earth. This is because the are most directly in line with the direct heat from the sun.
Due to this heat from the sun, atmospheric air around the equatorial regions are hot and less dense than air in regions of higher latitudes, and thus, rises above the equator. The rising air at the equator is replaced by colder and denser air from higher latitudes north and south of the equator. As the rising air of the equatorial regions are being replaced by colder and denser air from higher latitudes, the hot and humid air moves away from the equator, toward regions of higher latitude, north and south thereby setting up a convection current of heat flow.