You can simply subtract the atomic number from the mass number in order to find the number of neutrons.
Answer:
V₂ = 111.3 mL
Explanation:
Given data:
Initial volume of gas = 50.0 mL
Initial temperature = standard = 273.15 K
Final volume = ?
Final temperature = 335 °C (335+273.15 = 608.15 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 50.0 mL ×608.15 K / 273.15 k
V₂ = 30407.5 mL.K / 273.15 K
V₂ = 111.3 mL
Answer:
0.077 M
Explanation:
Molarity is the representation of the solution.
Molarity:
It is amount of solute in moles per liter of solution and represented by M
Formula used for Molarity
M = moles of solute / Liter of solution . . . . . . . . . . (1)
Data Given :
The concentration of half normal (NaCl) saline = 0.45g / 100 g
So,
Volume of Solution = 100 g = 100 mL
Volume of Solution in L = 100 mL / 1000
Volume of Solution = 0.1 L
molar mass of NaCl = 58.44 g/mol
Now to find number of moles of Nacl
no. of moles of NaCl = mass of NaCl / molar mass
no. of moles of NaCl = 0.45g / 58.44 g/mol
no. of moles of NaCl = 0.0077 g
Put values in the eq (1)
M = moles of solute / Liter of solution . . . . . . . . . . (1)
M = 0.0077 g / 0.1 L
M = 0.077 M
So the molarity of half-normal saline solution (0.45% NaCl) = 0.077 M