Answer:
- 2 and 12
Step-by-step explanation:
let the 2 integers be x and y , x > y , then
x - y = 14 → (1)
x + y = 10 → (2)
add the 2 equations term by term to eliminate y
2x = 24 ( divide both sides by 2 )
x = 12
Substitute x = 12 into (2)
12 + y = 10 ( subtract 12 from both sides )
y = - 2
As a check
x + y = 12 + (- 2) = 12 - 2 = 10
x - y = 12 - (- 2) = 12 + 2 = 14
xy = 12 × - 2 = - 24
 
        
             
        
        
        
Answer:
x=16
Step-by-step explanation:
12 = x - 4
+4      +4
By adding 4 to both sides it cancels out the -4 leaving the x alone and makes x=16
 
        
                    
             
        
        
        
Answer:

Step-by-step explanation:
![\\ \int\limits^{a}_{0} \int\limits^{x}_{0} \int\limits^{x+y}_{0} {e^{x+y+z}} \, dzdydx \\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [\int\limits^{x+y}_{0} {e^{x+y}e^z} \, dz]dydx \\\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [e^{x+y}\int\limits^{x+y}_{0} {e^z} \, dz]dydx\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [e^{x+y}e^z\Big|_0^{x+y}]dydx \\\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} [e^{x+y}e^{x+y}-e^{x+y}]dydx \\\\\\=\int\limits^{a}_{0} \int\limits^{x}_{0} e^{2x+2y}-e^{x+y}dydx \\\\\\](https://tex.z-dn.net/?f=%5C%5C%20%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%2By%7D_%7B0%7D%20%7Be%5E%7Bx%2By%2Bz%7D%7D%20%5C%2C%20dzdydx%20%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5B%5Cint%5Climits%5E%7Bx%2By%7D_%7B0%7D%20%7Be%5E%7Bx%2By%7De%5Ez%7D%20%5C%2C%20dz%5Ddydx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Be%5E%7Bx%2By%7D%5Cint%5Climits%5E%7Bx%2By%7D_%7B0%7D%20%7Be%5Ez%7D%20%5C%2C%20dz%5Ddydx%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Be%5E%7Bx%2By%7De%5Ez%5CBig%7C_0%5E%7Bx%2By%7D%5Ddydx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20%5Be%5E%7Bx%2By%7De%5E%7Bx%2By%7D-e%5E%7Bx%2By%7D%5Ddydx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20e%5E%7B2x%2B2y%7D-e%5E%7Bx%2By%7Ddydx%20%5C%5C%5C%5C%5C%5C)
![\\=\int\limits^{a}_{0} [\int\limits^{x}_{0} e^{2x}e^{2y}-e^{x+y}dy]dx \\\\\\=\int\limits^{a}_{0} [\int\limits^{x}_{0} e^{2x}e^{2y}dy- \int\limits^{x}_{0}e^{x}e^{y}dy]dx \\\\\\u=2y\\du=2dy\\dy=\frac{1}{2}du\\\\\\=\int\limits^{a}_{0} [\frac{e^{2x}}{2}\int e^{u}du- e^x\int\limits^{x}_{0}e^{y}dy]dx \\\\\\=\int\limits^{a}_{0} [\frac{e^{2x}}{2}\cdot e^{2y}\Big|_0^x- e^xe^{y}\Big|_0^x]dx \\\\\\=\int\limits^{a}_{0} [\frac{e^{2x+2y}}{2} - e^{x+y}\Big|_0^x]dx \\\\](https://tex.z-dn.net/?f=%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20e%5E%7B2x%7De%5E%7B2y%7D-e%5E%7Bx%2By%7Ddy%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cint%5Climits%5E%7Bx%7D_%7B0%7D%20e%5E%7B2x%7De%5E%7B2y%7Ddy-%20%5Cint%5Climits%5E%7Bx%7D_%7B0%7De%5E%7Bx%7De%5E%7By%7Ddy%5Ddx%20%5C%5C%5C%5C%5C%5Cu%3D2y%5C%5Cdu%3D2dy%5C%5Cdy%3D%5Cfrac%7B1%7D%7B2%7Ddu%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B2%7D%5Cint%20e%5E%7Bu%7Ddu-%20e%5Ex%5Cint%5Climits%5E%7Bx%7D_%7B0%7De%5E%7By%7Ddy%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B2%7D%5Ccdot%20e%5E%7B2y%7D%5CBig%7C_0%5Ex-%20e%5Exe%5E%7By%7D%5CBig%7C_0%5Ex%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B2x%2B2y%7D%7D%7B2%7D%20-%20e%5E%7Bx%2By%7D%5CBig%7C_0%5Ex%5Ddx%20%5C%5C%5C%5C)
![\\=\int\limits^{a}_{0} [\frac{e^{4x}}{2} - e^{2x}-\frac{e^{2x}}{2} + e^{x}]dx \\\\\\=\int\limits^{a}_{0} \frac{e^{4x}}{2} -\frac{3e^{2x}}{2} + e^{x}dx \\\\\\=\int\limits^{a}_{0} \frac{e^{4x}}{2}dx -\int\limits^{a}_{0}\frac{3e^{2x}}{2}dx + \int\limits^{a}_{0}e^{x}dx \\\\\\u_1=4x\\du_1=4dx\\dx=\frac{1}{4}du_1\\\\\u_2=2x\\du_2=2dx\\dx=\frac{1}{2}du_2\\\\\\=\frac{1}{8}\int e^{u_1}du_1 -\frac{3}{4}\int e^{u_2}du_2 + \int\limits^{a}_{0}e^{x}dx \\\\\\](https://tex.z-dn.net/?f=%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5B%5Cfrac%7Be%5E%7B4x%7D%7D%7B2%7D%20-%20e%5E%7B2x%7D-%5Cfrac%7Be%5E%7B2x%7D%7D%7B2%7D%20%2B%20e%5E%7Bx%7D%5Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cfrac%7Be%5E%7B4x%7D%7D%7B2%7D%20-%5Cfrac%7B3e%5E%7B2x%7D%7D%7B2%7D%20%2B%20e%5E%7Bx%7Ddx%20%5C%5C%5C%5C%5C%5C%3D%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%20%5Cfrac%7Be%5E%7B4x%7D%7D%7B2%7Ddx%20-%5Cint%5Climits%5E%7Ba%7D_%7B0%7D%5Cfrac%7B3e%5E%7B2x%7D%7D%7B2%7Ddx%20%2B%20%5Cint%5Climits%5E%7Ba%7D_%7B0%7De%5E%7Bx%7Ddx%20%5C%5C%5C%5C%5C%5Cu_1%3D4x%5C%5Cdu_1%3D4dx%5C%5Cdx%3D%5Cfrac%7B1%7D%7B4%7Ddu_1%5C%5C%5C%5C%5Cu_2%3D2x%5C%5Cdu_2%3D2dx%5C%5Cdx%3D%5Cfrac%7B1%7D%7B2%7Ddu_2%5C%5C%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7B8%7D%5Cint%20e%5E%7Bu_1%7Ddu_1%20-%5Cfrac%7B3%7D%7B4%7D%5Cint%20e%5E%7Bu_2%7Ddu_2%20%2B%20%5Cint%5Climits%5E%7Ba%7D_%7B0%7De%5E%7Bx%7Ddx%20%5C%5C%5C%5C%5C%5C)

Sorry if that took a while to finish. I am in AP Calculus BC and that was my first time evaluating a triple integral. You will see some integrals and evaluation signs with blank upper and lower boundaries. I just had my equation in terms of u and didn't want to get any variables confused. Hope this helps you. If you have any questions let me know. Have a nice night.
 
        
             
        
        
        
Answer:
ok imma be honest i dont have a clue jk
Step-by-step explanation:
use a calculator
 
        
             
        
        
        
Answer:
<em>I</em><em> hope</em><em> it's</em><em> helps</em><em> you</em>
<em>have</em><em> a</em><em> nice</em><em> day</em>