Answer:
a. Raise the pH slightly
Explanation:
We know that
Pka of HNO2/KNO2 =3.39
Moles of HNO2 in the buffer=0.247 mol/L×1L=0.247 moles
Moles of NO2-=0.329mol/L×1L=0.329 moles
If 0.271 moles of Ca(OH)2 is added it will neutralise 0.136 moles of acid ,HNO2,remaining HNO2=0.247-0.136=0.111 moles
Moles of NO2- will increase as 0.0333 moles Ca(NO)2 will be formed =0.0333+0.036=0.0693 moles
pH=pka+log [base]/[acid] {henderson -hasselbach equation}
=3.39+log (0.0693/0.0317)=3.39+0.34=3.73
pH=3.73
The molar solubility is 7.4×
M and the solubility is 7.4×
g/L .
Calculation ,
The dissociation of silver bromide is given as ,
→
+ 
S
- S S
Ksp = [
] [
] = [S] [ S ] = 
S = √ Ksp = √ 5. 5×
= 7.4×
The solubility =7.4×
g/L
The molar solubility is the solubility of one mole of the substance.
Since , one mole of
is dissociates and form one mole of each
and
ion . So, solubility is equal to molar solubility but unit is different.
Molar solubility = 7.4×
mol/L = 7.4×
M
To learn more about molar solubility ,
brainly.com/question/16243859
#SPJ4
Answer:
in nuclear fission, an unstable atom splits into 2 or more smaller pieces that are more stable and releases energy in the process. the fission process also releases extra neutrons which can split additional atoms, resulting in a chain reaction that releases a lot of energy
A radioactive element has an unstable nucleus that emits particles in the form of alpha, beta, or gamma radiation. A stable element has a nucleus that does not emit such particles
Answer:
Explanation:
To calculate pH you need to use Henderson-Hasselbalch formula:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
Where HA is the acid concentration and A⁻ is the conjugate base concentration.
The equilibrium of acetic acid is:
CH₃COOH ⇄ CH₃COO⁻ + H⁺ pka: 4,75
Where <em>CH₃COOH </em>is the acid and <em>CH₃COO⁻ </em>is the conjugate base.
Thus, Henderson-Hasselbalch formula for acetic acid equilibrium is:
pH = 4,75 + log₁₀ ![\frac{[CH_{3}COO^-]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
a) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[2 mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B2%20mol%5D%7D)
<em>pH = 4,75</em>
<em></em>
b) The pH is:
pH = 4,75 + log₁₀ ![\frac{[2 mol]}{[1mol]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20mol%5D%7D%7B%5B1mol%5D%7D)
<em>pH = 5,05</em>
<em></em>
I hope it helps!