Answer:
C. 1-ethyl, 3-methylcyclohexane
(Photo for proof at the bottom.)
Explanation:
The 1-ethyl is because you start numbering from the longest branch, towards the next closest branch. Prefix "eth-" means two, there are 2 carbons in the longest branch. 3-methyl is because the next branch is at number 3, and prefix "meth-" means 1, there is 1 carbon in that chain. "Cyclo" in cyclohexane means the skeletal model is shaped like a ring, and the "hexane" means there are 6 carbons in the ring. Prefix "hex" means 6.
Here's a photo of the unit review on Edge. Refer to the 2nd attachment for a visualization.
Please click the heart if this helped.
Answer:
P.E = 25.48 J
Explanation:
Given data:
Mass = 2 Kg
Height = 1.3 m
Potential energy = ?
Solution:
Formula:
P.E = m . g . h
P. E = potential energy
m = mass in kilogram
g = acceleration due to gravity
h = height
Now we will put the values in formula.
P.E = m . g . h
P.E = 2 Kg . 9.8 m /s² . 1.3 m
P.E = 25.48 Kg. m² / s²
Kg. m² / s² = J
P.E = 25.48 J
Answer:
A). The complementary shapes of an enzyme and a substrate.
Explanation:
The Lock-and-key mechanism was proposed by Emil Fischer for the first time and characterized as the metaphor which helps in elucidating the specificity of the enzymatic reactions. In this metaphor, the lock is described as the enzyme while 'key' is characterized as the substrate which the enzyme acts upon. If the key is not appropriately sized, it will not fit into the active site i.e. the keyhole of the lock or enzyme and reaction will not take place. Thus, <u>option A</u> is the correct answer.
Answer:
C) LiOH + HCl → LiCl + H₂O
General Formulas and Concepts:
<u>Chemistry - Reactions</u>
- Synthesis Reactions: A + B → AB
- Decomposition Reactions: AB → A + B
- Single-Replacement Reactions: A + BC → AB + C
- Double-Replacement Reactions: AB + CD → AD + BC
Explanation:
<u>Step 1: Define</u>
RxN A: 2Na + 2H₂O → 2NaOH + H₂
RxN B: CaCO₃ → CaO + CO₂
RxN C: LiOH + HCl → LiCl + H₂O
RxN D: CH₄ + 2O₂ → CO₂ + 2H₂O
<u>Step 2: Identify</u>
RxN A: Single Replacement Reaction
RxN B: Decomposition Reaction
RxN C: Double Replacement Reaction
RxN D: Combustion Reaction