14+4^2\14-3*4 = 15 your answer is 15
Step-by-step explanation:
It asks you to choose values for w, the width, and evaluate the equation for each. It describes the constraint "the perimeter of 20 units" The perimeter of a rectangle is the length of all the lines of a regtangle.
Or
2L + 2W = 20 reduce this to simplest for by dividing both sides by 2;
L + W = 10, so the length plus the width is 10. Rearrange it to be W = 10 - L. Values of W can range from 1 to 9. Now sove for a few points in the function.
f(W) = 10W - W^2
3; 10(3) - 3^2 = 30 - 9 = 21.
If we look at the constraint, L = 10 - W, when the width is 3 the length must be 7. The area of a rectangle is L x W, 3 x 7 = 21. That checks against the function.
Solve for additional points.
4; 10(4) - 4^2 = 40 - 16 = 24.
If W is 4 the L is 6 and 4 x 6 = 24
Part A)
If f(x) - 3 is the new equation, it means there is a vertical translation of f(x) down 3 units. The y-intercept will decrease by 3 units. Areas of increasing on the function may be lessened as the function is being translated down 3 units. The areas of decrease will increase because the function is being translated down. End behaviour will not change from a translation as long as the function is continuous at each end, (not a finite function with end points). The evenness or oddness of f(x) will not change either.
Part B:
The y-intercept will be flipped horizontally about the x-axis and multiplied by 2. This will mean that if the y-intercept was positive, it will now be negative and vice versa. The increasing and decreasing regions of the graph will be flipped, so anywhere f(x) was positive will now be negative and vice versa. They will also be double what they were before because all values are multiplied by 2. The end behaviour will switch. If f(x) was from Quad1->Quad3 for example, it will now be Quad2->Quad4 because of the flip at the x-axis. The evenness and oddness of the function will not change seeing as the degree of f(x) is not affected.
Point 1: (-3, 7)
Point 2: (-17, 3)
To find the slope, we need to use the slope formula which is as follows: m = (y2 - y1) / (x2 - x1). We will plug in each x and y coordinate from our points above, respectively.
m = (3 - 7) / (-17 - - 3)
m = (-4) / (-14)
m = 2/7
The slope of the line that goes through (-3, 7) and (-17, 3) is 2/7.
Hope this helps!! :)
Hiiiiiiiii the answer is .......... I don’t knowwweeee!!!!!