Answer:
81.59%
Explanation:
First we <u>convert 107.50 g of NH₃ into moles</u>, using its <em>molar mass</em>:
- 107.50 g NH₃ ÷ 17 g/mol = 6.32 mol NH₃
Now we <u>calculate how many moles of NO would have been formed by the complete reaction of 6.32 moles of NH₃</u>:
- 6.32 mol NH₃ *
= 6.32 mol NO
Then we <u>convert 6.32 moles of NO to grams</u>, using its <em>molar mass</em>:
- 6.32 mol NO * 30 g/mol = 189.60 g NO
Finally we <u>calculate the percent yield</u>:
- 154.70 g / 189.60 g * 100% = 81.59%
Question:
A chemistry student needs of 10 g isopropenylbenzene for an experiment. He has available 120 g of a 42.7% w/w solution of isopropenylbenzene in acetone. Calculate the mass of solution the student should use. If there's not enough solution, press the "No solution" button.
Answer:
The answer to the question is as follows
The mass of solution the student should use is 23.42 g.
Explanation:
To solve the question we note the following
A solution containing 42.7 % w/w of isopropenylbenzene in acetone has 42.7 g of isopropenylbenzene in 100 grams of the solution
Therefore we have 10 g of isopropenylbenzene contained in
100 g * 10 g/ 42.7 g = 23.42 g of solution
Available solution = 120 g
Therefore the quantity to used from the available solution = 23.42 g of the isopropenylbenzene in acetone solution.
Answer:
I believe CDC I s the most reliable
Answer:
the normality of the given solution is 0.0755 N
Explanation:
The computation of the normality of the given solution is shown below:
Here we have to realize the two sodiums ions per carbonate ion i.e.
N = 0.321g Na_2CO_3 × (1mol ÷ 105.99g)×(2eq ÷ 1mol)
= 0.1886eq ÷ 0.2500L
= 0.0755 N
Hence, the normality of the given solution is 0.0755 N