... The top branch of the 3-branched parallel block ... the 9 and 6 in series ...
is equivalent to a single resistor of 15 ohms.
... The 3-branched parallel block boils down to (30, 10, and 15) in parallel.
That's (1/30 + 1/10 + 1/15)⁻¹ = 5 ohms.
... The 5-ohm-equivalent block and the 20-ohm resistor form a
voltage divider across the battery.
The voltage across the 5-ohm-equivalent block is (5/25 x 30v) = 6v .
... The top branch of the block is equivalent to a (9 + 6) = 15-ohmer.
With 6v across its ends, the current through that branch is (6/15) = 0.4A .
... With 0.4A flowing through it, the 9-ohm resistor is dissipating
I²R = (0.4A)² (9 ohms) = (0.16 A²) (9 ohms) = 1.44 W (choice-3)
<h3>
Answer:</h3>
800 meters
<h3>
Explanation;</h3>
<u>We are given;</u>
- Speed as 40 m/s
- Time as 20 seconds
We are required to determine the distance traveled
- Speed refers to the rate of change in distance.
- It is given by;
Speed = Distance ÷ time
Rearranging the formula;
Distance = speed × time
In this case;
Distance = 40 m/s × 20 sec
= 800 meters
Thus, the distance traveled by the car is 800 m
Answer:
Explanation:
My speed after the interaction will depend upon the impulse the ball will make on me . Now impulse can be expressed as follows
Impulse = change in momentum
change in momentum in the ball will be maximum when the ball bounces back with the same velocity which can be shown as follows
change in momentum = mv - ( - mv ) = 2mv
So when ball is bounced back with same velocity , it suffers greatest impulse from my hand . In return , it reacts with the same impulse on my hand pushing me with greatest impulse according to third law of motion. this maximizes my speed after the interaction.
Explanation:
what exactly are you asking for?
Answer:
Explanation:
Given that,
B(t) = B0 cos(ωt) • k
Radius r = a
Inner radius r' = a/2 and resistance R.
Current in the loop as a function of time I(t) =?
Magnetic flux is given as
Φ = BA
And the Area is given as
A = πr², where r = a/2
A = πa²/4
Then,
Φ = ¼ Bπa²
Φ(t) = ¼πa²Bo•Cos(ωt)
Then, the EMF is given as
ε(t) = -dΦ/dt
ε(t) = -¼πa²Bo • -ωSin(ωt)
ε(t) = ¼ωπa²Bo•Sin(ωt)
From ohms law,
ε = iR
Then, i = ε/R
I(t) = ¼ωπa²Bo•Sin(ωt) /R
This is the current induced in the loop.
Check attachment for better understanding