Explanation:
- Newton's first law of motion:
"An object at rest (or in uniform motion) remains at rest (or in uniform motion) unless acted upon an unbalanced force
In this situation, we can apply Newton's first law to the keys of the keyboard that are not hit by the fingers of the man. In fact, as no force act on the keys, they remain at rest.
- Newton's second law of motion:
"The acceleration experienced by an object is proportional to the net force exerted on the object; mathematically:

where F is the net force, m is the mass of the object, and a its acceleration"
In this case, we can apply Newton's second law to the keys of the keyboard that are hit by the man: in fact, as they are hit, they experience a downward force, and therefore they experience a downward acceleration.
"Newton's third law of motion:
"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"
Here We can apply Newton's third law to the pair of objects finger-key: in fact, as the finger apply a force on the key (action force), then the key exerts a force back on the finger (reaction force), equal and opposite.
From the case we know that:
- The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
- The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
- The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².
Please refer to the image below.
We know from the case, that:
m = 2M
r = R
m2 = 1/2M
distance between the center of mass to point P = p = R
Distance of the point mass to point P = d = 2R
We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:
Icm = 1/2mr²
Icm = 1/2(2M)(R²)
Icm = MR² ... (i)
Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:
Ip = Icm + mp²
Ip = MR² + (2M)R²
Ip = 3MR² ... (ii)
Then, the total moment of inertia of the disk with the point mass is:
I total = Ip + I mass
I total = 3MR² + (1/2M)(2R)²
I total = 3MR² + 2MR²
I total = 5MR² ... (iii)
Learn more about Uniform Flat Disk here: brainly.com/question/14595971
#SPJ4
It's a quantitative observation because it includes numerical data.
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
1 C
Explanation:
The intensity of electric current is defined as

where
I is the current
q is the amount of charge transferred
t is the time interval during which the charge is transferred
For the lightning in this problem, we have
is the current
is the time interval
Solving the formula for q, we find the amount of charge transferred:
