For the part a) we need only the momentum of the box and we have the data to find it.
Momentum is given by,

where clearly, p is the momentum, m the mass of the box and v is the velocity.
Substituting,

For part b) we need an analysis of the situation. We understand that the box on a surface that has no friction will continue to rotate at the same speed previously defined. The box can only stop with friction, so,

<em>It is the same that part a)</em>
Answer:

Explanation:
The principle of conservation of momentum, states that if the sum of the forces acting on a system is null, the initial total momentum of the system before a collision equals the final total momentum of the system after the collision. The collision is completely inelastic, which means that the players remain stick to each other after the collision:

Answer:
Answer D: It describes the relationship between motion and force.
Explanation:
The answer is D because a law is something that describes something in nature, but does not try to explain how or why is occurs (that is a theory). Options B and C sound more like theories, while option A sounds like a definition. Option D is correct because a law describes without explaining.
Answer:
a) the one with a lower orbit b) the one with a higher orbit
Explanation:
Let's consider orbital mechanics. To get an object in orbit, we need it to fall to earth parallel to the earth's surface. To understand it easily imagine a projectile thrown horizontally further and further away, at one point, the projectile hits the cannon from behind. Considering there is no wind resistance, that would be a projecile in orbit.
In other words, the circular orbits of some objects around a massive body are due to the equality between centrifugal acceleration and gravity acceleration.
.
so the velocity is

where "G" is the gravitational constant, "M" the mass of the massive body and "r" the distance between the object and the center of gravity of mass M. As you can note, if "r" increase, "v" decrease.
The orbital period of any object in orbit is

where "a" is length of semi-major axis (a = r in circular orbits). So if "r" increase, "T" increase.
Answer:
C 80 m
Explanation:
Given:
v₀ = 30 m/s
a = -10 m/s²
t = 8 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (30 m/s) (8 s) + ½ (-10 m/s²) (8 s)²
Δy = -80 m
The ball lands 80 m below where it started. So the height of the cliff is 80 m.