1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
o-na [289]
3 years ago
6

Find the measure of each unknown angle.

Mathematics
1 answer:
tekilochka [14]3 years ago
3 0

Answer:

= 56°

= 34°

Step-by-step explanation:

3x + 5 + 2x = 90°

3x + 2x + 5 = 90°

5x + 5 = 90°

5x = 90 - 5

5x = 85

x = 85/5

x = 17

3x + 5

= 3(17) + 5

= 51 + 5

= 56°

2x

= 2(17)

= 34°

You might be interested in
Evaluate the expression 2s for s=9
Bas_tet [7]
Hello, there!


If s = 9, then 2s = 2 * 9

2 * 9 = 18

2s = 18


I hope I helped!

Let me know if you need anything else!

~ Zoe
6 0
3 years ago
Someone PLEASE help me with these 2 questions??<br> thank you!
Alexxandr [17]

Answer:

40. D. 5x-14

Step-by-step explanation:

7 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Weights of American adults are normally distributed with a mean of 180 pounds and a standard deviation of 8 pounds. What is the
Leto [7]

Answer:

There is 16.2% probability that a randomly selected individual will be between 185 and 190 pounds

Step-by-step explanation:

Z score

The z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:

z = (x - μ) / σ

where μ is the mean, x = raw score and σ is the standard deviation.

Given μ = 180, σ = 8.

For x = 185:

z = (185 - 180)/8 = 0.625

For x = 190:

z = (190 - 180)/8 = 1.25

P(185 < x < 190) = P(0.625 < z < 1.25) = P(z < 1.25) - P(z < 0.625) = 0.8944 - 0.7324 = 16.2%

There is 16.2% probability that a randomly selected individual will be between 185 and 190 pounds

3 0
3 years ago
-5x + 10 &gt; -15 can someone solve this?
MakcuM [25]

Answer:

x<5

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the difference? 2x7 - 8x7
    12·2 answers
  • How are the decimals 0.5 0.05 and 0.005 related
    8·1 answer
  • A small airplane used 5 2/3 gallons of fuel to fly a 2 hour trip. How many gallons were used each hour? Please show work.
    13·1 answer
  • An engine that’s being tested is coupled to a dynamometer that has a radius arm of 1.70 feet. The test data shows a speed of 5,0
    12·2 answers
  • What is the simplest form of the expression?
    13·1 answer
  • Solve the system of equations using substitution. Show your work<br> y=2x + 3<br> y=3x + 1
    5·1 answer
  • Solve for x: 3x -1 = -10
    15·1 answer
  • How are common denominator and a common multiple alike and different
    14·1 answer
  • Francesca makes and sells jewelry. She uses the equation p = "285 + 45n to model the situation, where p is the amount of profit
    14·1 answer
  • What is 2 8/10 + (-3.5) in decimal form, Show your work
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!