Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
This problem is simply converting the concentration from molality to molarity. Molality has units of mol solute/kg solvent, while molarity has units of mol solute/L solution.
2.24 mol H2SO4/kg H2O * (0.25806 kg H2SO4/mol H2SO4) = 0.578 kg H2SO4/kg H2O
That means the solution weighs a total of 1 kg + 0.578 kg = 1.578 kg. Then, convert it to liters using the density data:
1.578 kg * (1000g / 1kg) * (1 mL/1.135 g) = 1390 mL or 1.39 L.
Hence, the molarity is
2.24/1.39 = 1.61 M
Answer:
0.446
Explanation:
ccu = 3035.655 / 104 g x (98.9 - 33.5) = 0.446 J / g 0 C
Answer:
Option D which is Sn4- is the answer
The partial pressure of hydrogen is 0.31 atm
calculation
find the number of hydrogen moles the container, that is
25/100 x 6.4 =1.6 moles of hydrogen
find the partial pressure for hydrogen in 1.6 moles
that is 6.4 moles= 1.24 atm
1.6 moles= ?
by cross multiplication
1.6moles x1.24 atm/ 6.4 moles= 0.31 atm